Weakinteract | Weak interactions in self-organizations studied by NMR spectroscopy in the supramolecular solid-state

Summary
Self-assembly is a fundamental process by which individual subunits organize into ordered supramolecular entities, usually through weak interactions. A longstanding goal is to engineer synthetic self-organized structures, often inspired by protein assemblies found in the context of living cells, to design materials of high potentiality, e.g. drug delivery, scaffolding or electronic applications. There is a tremendous interest in physical chemistry to understand the role of weak interactions at the supramolecular interfaces. However, self-organizations usually form soft material, lacking crystalline order and at the same time exhibiting poor solubility. As a consequence, standard techniques for structural investigation such as X-ray crystallography or solution NMR usually fail or deliver only partial information, preventing an atomic-level understanding and therefore the design of new architectures.
The Weakinteract project aims at developing NMR spectroscopy in the relevant supramolecular solid-state for those non-crystalline and insoluble self-organizations. Weakinteract will exploit strategic isotope labeling, state-of-the-art solid-state NMR methods and integration of hybrid approaches to elucidate the assembly mechanisms, revealing the weak interactions at the supramolecular interfaces. The project comprises three different aspects of growing complexity: (1) Elaboration of a proof-of-concept for atomic resolution structure determination of self-assembled nanotubes in hydrogel form. (2) Determination of the structural basis for bacterial filaments (3) Investigation of the phenomenon of heterogeneous supramolecular templating, in the context of amyloid fold initiation. One major aim of Weakinteract is to provide a robust approach dedicated to chemists, biophysicists and structural biologists in order to tackle weak interactions in the relevant assembled state, ultimately delivering atomic level structures and an understanding of the assembly process.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/639020
Start date: 01-09-2015
End date: 28-02-2021
Total budget - Public funding: 1 472 425,00 Euro - 1 472 425,00 Euro
Cordis data

Original description

Self-assembly is a fundamental process by which individual subunits organize into ordered supramolecular entities, usually through weak interactions. A longstanding goal is to engineer synthetic self-organized structures, often inspired by protein assemblies found in the context of living cells, to design materials of high potentiality, e.g. drug delivery, scaffolding or electronic applications. There is a tremendous interest in physical chemistry to understand the role of weak interactions at the supramolecular interfaces. However, self-organizations usually form soft material, lacking crystalline order and at the same time exhibiting poor solubility. As a consequence, standard techniques for structural investigation such as X-ray crystallography or solution NMR usually fail or deliver only partial information, preventing an atomic-level understanding and therefore the design of new architectures.
The Weakinteract project aims at developing NMR spectroscopy in the relevant supramolecular solid-state for those non-crystalline and insoluble self-organizations. Weakinteract will exploit strategic isotope labeling, state-of-the-art solid-state NMR methods and integration of hybrid approaches to elucidate the assembly mechanisms, revealing the weak interactions at the supramolecular interfaces. The project comprises three different aspects of growing complexity: (1) Elaboration of a proof-of-concept for atomic resolution structure determination of self-assembled nanotubes in hydrogel form. (2) Determination of the structural basis for bacterial filaments (3) Investigation of the phenomenon of heterogeneous supramolecular templating, in the context of amyloid fold initiation. One major aim of Weakinteract is to provide a robust approach dedicated to chemists, biophysicists and structural biologists in order to tackle weak interactions in the relevant assembled state, ultimately delivering atomic level structures and an understanding of the assembly process.

Status

CLOSED

Call topic

ERC-StG-2014

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2014
ERC-2014-STG
ERC-StG-2014 ERC Starting Grant