GAIA | A Genomic and Macroevolutionary Approach to Studying Diversification in an Insect-Plant Arms Race

Summary
The exuberant proliferation of herbivorous insects is often attributed to their association with plants, making their interactions of particular importance to understanding what is driving their vast diversity. Early biologists exploring the underlying factors proposed the hypothesis of coevolution (and the escape and radiate model). Despite general support for this hypothesis, the macroevolutionary and genomic consequences of the origins and evolutionary dynamics of host-plant shifts remain elusive. Recent results illustrate the need for a multidisciplinary approach to assessing the role of host plants in shaping insect diversity at macroevolutionary scales. Using the swallowtail butterflies (Papilionidae) and their host plants, this project will develop a macroevolutionary and genomic framework to studying the origin and evolution of an arms race through time and space. We will build a complete species-level phylogeny for Papilionidae relying on whole-genome sequencing for all species. This time-calibrated phylogeny will be combined with species traits to estimate ancestral host-plant preferences and subsequent host-plant shifts. We will reconstruct dated phylogenies of the main host-plant families to estimate whether the butterflies and their host plants diversified concurrently through time and space. Diversification rates will be estimated for shifting/non-shifting and prey/non-prey clades. A matching genomic survey will to look for genes under positive selection by comparing sets of phylogenetic branches that experienced a host-plant shift versus branches without such a shift. Transcriptomes will be characterized for caterpillars and their plants to identify and pinpoint the genes involved in the arms race, as well as to compare them across the swallowtail tree of life. With this ambitious research proposal, we aim to provide answers to longstanding and fundamental evolutionary questions on the mechanisms behind ecological interactions over long timescales.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/851188
Start date: 01-03-2020
End date: 28-02-2025
Total budget - Public funding: 1 500 000,00 Euro - 1 500 000,00 Euro
Cordis data

Original description

The exuberant proliferation of herbivorous insects is often attributed to their association with plants, making their interactions of particular importance to understanding what is driving their vast diversity. Early biologists exploring the underlying factors proposed the hypothesis of coevolution (and the escape and radiate model). Despite general support for this hypothesis, the macroevolutionary and genomic consequences of the origins and evolutionary dynamics of host-plant shifts remain elusive. Recent results illustrate the need for a multidisciplinary approach to assessing the role of host plants in shaping insect diversity at macroevolutionary scales. Using the swallowtail butterflies (Papilionidae) and their host plants, this project will develop a macroevolutionary and genomic framework to studying the origin and evolution of an arms race through time and space. We will build a complete species-level phylogeny for Papilionidae relying on whole-genome sequencing for all species. This time-calibrated phylogeny will be combined with species traits to estimate ancestral host-plant preferences and subsequent host-plant shifts. We will reconstruct dated phylogenies of the main host-plant families to estimate whether the butterflies and their host plants diversified concurrently through time and space. Diversification rates will be estimated for shifting/non-shifting and prey/non-prey clades. A matching genomic survey will to look for genes under positive selection by comparing sets of phylogenetic branches that experienced a host-plant shift versus branches without such a shift. Transcriptomes will be characterized for caterpillars and their plants to identify and pinpoint the genes involved in the arms race, as well as to compare them across the swallowtail tree of life. With this ambitious research proposal, we aim to provide answers to longstanding and fundamental evolutionary questions on the mechanisms behind ecological interactions over long timescales.

Status

SIGNED

Call topic

ERC-2019-STG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-STG