GeoLocLang | GeoLocLang

Summary
"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Langlands correspondence. This conjecture says that given a discrete local Langlands parameter of a reductive group over a local field of equal or unequal characteristic, one should be able to construct a perverse Hecke eigensheaf on the stack of G-bundles on the ""curve"" I defined and studied in my joint work with Fontaine.
I propose to construct, study and establish the basic properties of the geometric objects involved in this conjecture, this stack of G-bundles being a ""perfectoid stacks"" in the framework of Scholze theory of perfectoid spaces. At the same time I propose to establish the first steps in the proof of this conjecture, study particular cases in more details and explore consequences of this conjecture."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/742608
Start date: 01-10-2017
End date: 31-03-2023
Total budget - Public funding: 1 301 863,00 Euro - 1 301 863,00 Euro
Cordis data

Original description

"I formulated recently a conjecture that should allow to geometrize the local Langlands correspondence over a non-archimedean local field. This mixes p-adic Hodge theory, the geometric Langlands program and the classical local Langlands correspondence. This conjecture says that given a discrete local Langlands parameter of a reductive group over a local field of equal or unequal characteristic, one should be able to construct a perverse Hecke eigensheaf on the stack of G-bundles on the ""curve"" I defined and studied in my joint work with Fontaine.
I propose to construct, study and establish the basic properties of the geometric objects involved in this conjecture, this stack of G-bundles being a ""perfectoid stacks"" in the framework of Scholze theory of perfectoid spaces. At the same time I propose to establish the first steps in the proof of this conjecture, study particular cases in more details and explore consequences of this conjecture."

Status

SIGNED

Call topic

ERC-2016-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2016
ERC-2016-ADG