SPAWN | Simulating particle acceleration within black hole magnetospheres

Summary
Black holes are involved in extreme astrophysical phenomena such as accretion, launching of relativistic jets and particle acceleration. The origin of this activity is still poorly understood, but plasma processes within the magnetosphere of the black hole are most likely involved. Thanks to high-performance computing, it is now possible to probe this region. The current state-of-the-art numerical simulations have been focusing on a fluid description of the plasma surrounding black holes. This approach is not sufficient to understand how the plasma is generated and how particles are accelerated near black holes. Here, we propose to model black hole magnetospheres using global ab-initio particle-in-cell simulations where the fields, particles and radiation evolve in a self-consistent manner. Our project will produce the first fully consistent modeling of black hole magnetospheres and allow for an accurate interpretation of current and upcoming horizon-scale observations of the Galactic center and nearby supermassive black holes by the VLTI-Gravity instrument in the infrared and the Event Horizon Telescope in radio. This project will also lead to the prediction of the electromagnetic signal from black-hole neutron star binaries prior to the merger in coincidence with gravitational waves events detected by LIGO-VIRGO instruments.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/863412
Start date: 01-09-2020
End date: 28-02-2026
Total budget - Public funding: 1 330 322,00 Euro - 1 330 322,00 Euro
Cordis data

Original description

Black holes are involved in extreme astrophysical phenomena such as accretion, launching of relativistic jets and particle acceleration. The origin of this activity is still poorly understood, but plasma processes within the magnetosphere of the black hole are most likely involved. Thanks to high-performance computing, it is now possible to probe this region. The current state-of-the-art numerical simulations have been focusing on a fluid description of the plasma surrounding black holes. This approach is not sufficient to understand how the plasma is generated and how particles are accelerated near black holes. Here, we propose to model black hole magnetospheres using global ab-initio particle-in-cell simulations where the fields, particles and radiation evolve in a self-consistent manner. Our project will produce the first fully consistent modeling of black hole magnetospheres and allow for an accurate interpretation of current and upcoming horizon-scale observations of the Galactic center and nearby supermassive black holes by the VLTI-Gravity instrument in the infrared and the Event Horizon Telescope in radio. This project will also lead to the prediction of the electromagnetic signal from black-hole neutron star binaries prior to the merger in coincidence with gravitational waves events detected by LIGO-VIRGO instruments.

Status

SIGNED

Call topic

ERC-2019-COG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2019
ERC-2019-COG