E-MOTION | Molecular materials for a new generation of artificial muscles

Summary
Actuator devices converting energy into motion are a fundamental part of everyday life. However, there is currently an unmet need in actuation technologies to provide soft, smooth, noiseless movement that can mimic human motion and dexterity. The development of such “artificial muscles” is burgeoning in both interest and importance as it would enable significant advances in areas as important as robotics, medicine and aeronautics. To enable a step-change in this field, E·MOTION proposes to develop unprecedented macroscopic-scale soft materials based on switchable spin crossover molecules with remarkable actuating performances. Using an innovative combination of material engineering methods these materials will be endowed with electrical actuation, self-sensing and energy harvesting properties, which will be a major breakthrough. More fundamentally, E·MOTION aims at understanding in-depth structure vs. mechanical property relationships in these switchable materials, which is essential for processing and optimizing their function. A multiscale experimental and theoretical approach will be used to assess how the molecular deformation and change in molecular connectivity under external stimuli affect macroscopic mechanical properties as well as the cycle life. Finally, E·MOTION will take a major shift on the side of actuator design by the development of original fibre-braided actuators as well as 3D-printed, microfluidic actuator devices made of these materials. These advanced actuator designs will then be thoroughly analysed for their ability to mimic complex muscular schemes. This ambitious, multidisciplinary project that brings together various aspects of molecular and polymer chemistry, condensed matter physics, mechanical engineering and advanced manufacturing, will enable a new departure in my career and a significant leap forward in the state-of-the-art that shall expedite the societal exploitation of these novel, molecule-based actuator technologies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101019522
Start date: 01-10-2021
End date: 30-09-2026
Total budget - Public funding: 2 666 152,00 Euro - 2 666 152,00 Euro
Cordis data

Original description

Actuator devices converting energy into motion are a fundamental part of everyday life. However, there is currently an unmet need in actuation technologies to provide soft, smooth, noiseless movement that can mimic human motion and dexterity. The development of such “artificial muscles” is burgeoning in both interest and importance as it would enable significant advances in areas as important as robotics, medicine and aeronautics. To enable a step-change in this field, E·MOTION proposes to develop unprecedented macroscopic-scale soft materials based on switchable spin crossover molecules with remarkable actuating performances. Using an innovative combination of material engineering methods these materials will be endowed with electrical actuation, self-sensing and energy harvesting properties, which will be a major breakthrough. More fundamentally, E·MOTION aims at understanding in-depth structure vs. mechanical property relationships in these switchable materials, which is essential for processing and optimizing their function. A multiscale experimental and theoretical approach will be used to assess how the molecular deformation and change in molecular connectivity under external stimuli affect macroscopic mechanical properties as well as the cycle life. Finally, E·MOTION will take a major shift on the side of actuator design by the development of original fibre-braided actuators as well as 3D-printed, microfluidic actuator devices made of these materials. These advanced actuator designs will then be thoroughly analysed for their ability to mimic complex muscular schemes. This ambitious, multidisciplinary project that brings together various aspects of molecular and polymer chemistry, condensed matter physics, mechanical engineering and advanced manufacturing, will enable a new departure in my career and a significant leap forward in the state-of-the-art that shall expedite the societal exploitation of these novel, molecule-based actuator technologies.

Status

SIGNED

Call topic

ERC-2020-ADG

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-ADG ERC ADVANCED GRANT