Summary
At different scales, from molecular systems to technological infrastructures, physical systems group in structures which are neither simply regular or random, but can be represented by networks with complex shape. Proteins in metabolic structures and the World Wide Web, for example, share the same kind of statistical distribution of connections of their constituents. In addition, the individual elements of natural samples, like atoms or electrons, are quantum objects. Hence replicating complex networks in a scalable quantum platform is a formidable opportunity to learn more about the intrinsic quantumness of real world and for the efficient exploitation of quantum-complex structures in future technologies. Future trusted large-scale communications and efficient big data handling, in fact, will depend on at least one of the two aspects -quantum or complex- of scalable systems, or on an appropriate combination of the two.
In COQCOoN I will tackle both the quantum and the complex structure of physical systems. I will implement large quantum complex networks via multimode quantum systems based on both temporal and frequency modes of parametric processes pumped by pulsed lasers. Quantum correlations between amplitude and phase continuous variables will be arranged in complex topologies and delocalized single and multiple photon excitations will be distributed in the network. I aim at:
-Learn from nature: I will reproduce complex topologies in the quantum network to query the quantum properties of natural processes, like energy transport and synchronization, and investigate how nature-inspired efficient strategies can be transferred in quantum technologies.
-Control large quantum architectures: I will experiment network topologies that make quantum communication and information protocols resilient against internal failures and environmental changes. I will setup distant multi-party quantum communications and quantum simulation in complex networks.
In COQCOoN I will tackle both the quantum and the complex structure of physical systems. I will implement large quantum complex networks via multimode quantum systems based on both temporal and frequency modes of parametric processes pumped by pulsed lasers. Quantum correlations between amplitude and phase continuous variables will be arranged in complex topologies and delocalized single and multiple photon excitations will be distributed in the network. I aim at:
-Learn from nature: I will reproduce complex topologies in the quantum network to query the quantum properties of natural processes, like energy transport and synchronization, and investigate how nature-inspired efficient strategies can be transferred in quantum technologies.
-Control large quantum architectures: I will experiment network topologies that make quantum communication and information protocols resilient against internal failures and environmental changes. I will setup distant multi-party quantum communications and quantum simulation in complex networks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/820079 |
Start date: | 01-06-2019 |
End date: | 30-11-2025 |
Total budget - Public funding: | 1 990 000,00 Euro - 1 990 000,00 Euro |
Cordis data
Original description
At different scales, from molecular systems to technological infrastructures, physical systems group in structures which are neither simply regular or random, but can be represented by networks with complex shape. Proteins in metabolic structures and the World Wide Web, for example, share the same kind of statistical distribution of connections of their constituents. In addition, the individual elements of natural samples, like atoms or electrons, are quantum objects. Hence replicating complex networks in a scalable quantum platform is a formidable opportunity to learn more about the intrinsic quantumness of real world and for the efficient exploitation of quantum-complex structures in future technologies. Future trusted large-scale communications and efficient big data handling, in fact, will depend on at least one of the two aspects -quantum or complex- of scalable systems, or on an appropriate combination of the two.In COQCOoN I will tackle both the quantum and the complex structure of physical systems. I will implement large quantum complex networks via multimode quantum systems based on both temporal and frequency modes of parametric processes pumped by pulsed lasers. Quantum correlations between amplitude and phase continuous variables will be arranged in complex topologies and delocalized single and multiple photon excitations will be distributed in the network. I aim at:
-Learn from nature: I will reproduce complex topologies in the quantum network to query the quantum properties of natural processes, like energy transport and synchronization, and investigate how nature-inspired efficient strategies can be transferred in quantum technologies.
-Control large quantum architectures: I will experiment network topologies that make quantum communication and information protocols resilient against internal failures and environmental changes. I will setup distant multi-party quantum communications and quantum simulation in complex networks.
Status
SIGNEDCall topic
ERC-2018-COGUpdate Date
27-04-2024
Images
No images available.
Geographical location(s)