DAPTOMIC | 3D Autonomous 2-PhoTon Optogenetics MICroscopy

Summary
Brain activity relies on complex interactions among large populations of neurons located in different brain regions. Understanding the relationships between these specific areas and disentangling the contributions of individual neurons to circuit function is an essential step to understand brain functioning. To elucidate the connection between brain activation and behaviour outcome, it is necessary to establish specific experimental strategies that allow to record and externally control neuronal activity during behaviour. Currently, there is an experimental trade-off between imaging speed, field of view and sample dimensions that limits current recording technology in imaging very large neuronal populations with concurrently high spatial and temporal resolution. Consequently, interactions between neurons in different brain areas are easily missed, whilst functionally related ensembles of neurons can be undetectable, blinded or falsely interpreted. DAPTOMIC aims to demonstrate the commercial viability of a new generation of autonomous (i.e. self-run, similar to a Tesla car) microscope add-on suitable for brain imaging. The main objective of DAPTOMIC is to turn the modules developed within the ERC Advanced Grant BrainBIT into a commercial product (minimum viable product), i.e. a new add-on to current generation microscopes that decides the imaging strategy - which portion of the sample to image and which portion of the sample to interact with – through AI, shortening experiment times by several orders of magnitude.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/966623
Start date: 01-06-2021
End date: 31-05-2023
Total budget - Public funding: - 150 000,00 Euro
Cordis data

Original description

Brain activity relies on complex interactions among large populations of neurons located in different brain regions. Understanding the relationships between these specific areas and disentangling the contributions of individual neurons to circuit function is an essential step to understand brain functioning. To elucidate the connection between brain activation and behaviour outcome, it is necessary to establish specific experimental strategies that allow to record and externally control neuronal activity during behaviour. Currently, there is an experimental trade-off between imaging speed, field of view and sample dimensions that limits current recording technology in imaging very large neuronal populations with concurrently high spatial and temporal resolution. Consequently, interactions between neurons in different brain areas are easily missed, whilst functionally related ensembles of neurons can be undetectable, blinded or falsely interpreted. DAPTOMIC aims to demonstrate the commercial viability of a new generation of autonomous (i.e. self-run, similar to a Tesla car) microscope add-on suitable for brain imaging. The main objective of DAPTOMIC is to turn the modules developed within the ERC Advanced Grant BrainBIT into a commercial product (minimum viable product), i.e. a new add-on to current generation microscopes that decides the imaging strategy - which portion of the sample to image and which portion of the sample to interact with – through AI, shortening experiment times by several orders of magnitude.

Status

CLOSED

Call topic

ERC-2020-POC

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.1. EXCELLENT SCIENCE - European Research Council (ERC)
ERC-2020
ERC-2020-PoC