Summary
Head direction (HD) cells provide directional information during spatial navigation and thus act as an
internal compass. The goal of this study is to understand how the HD circuit creates a lasting neural trace of
transient directional changes. Cells selective for HD have been identified in several brain regions, including
the retrosplenial cortex (RSC), and display persistent activity in response to transient vestibular turning
cues. Although a well-established theoretical framework proposes an elegant circuitry for achieving this
self-sustaining activity, biological evidence for such a circuit is lacking. Studies of HD circuitry have faced
significant challenges due to the necessity of functional monitoring at large and small scales in vivo, and
precise stimulus control. This study will take advantage of recent advances allowing the targeting of specific
cells and their inputs for chronic two-photon imaging in the awake, head-fixed, and passively rotated mouse.
Experiments will aim to (1) determine the spatial and temporal organization of HD-tuned responses in RSC,
and (2) functionally characterize the presynaptic inputs of HD cells. This information will validate or reject
a prominent theory of neural network organization, and provide unprecedented insight into a poorly
understood but critical brain function.
internal compass. The goal of this study is to understand how the HD circuit creates a lasting neural trace of
transient directional changes. Cells selective for HD have been identified in several brain regions, including
the retrosplenial cortex (RSC), and display persistent activity in response to transient vestibular turning
cues. Although a well-established theoretical framework proposes an elegant circuitry for achieving this
self-sustaining activity, biological evidence for such a circuit is lacking. Studies of HD circuitry have faced
significant challenges due to the necessity of functional monitoring at large and small scales in vivo, and
precise stimulus control. This study will take advantage of recent advances allowing the targeting of specific
cells and their inputs for chronic two-photon imaging in the awake, head-fixed, and passively rotated mouse.
Experiments will aim to (1) determine the spatial and temporal organization of HD-tuned responses in RSC,
and (2) functionally characterize the presynaptic inputs of HD cells. This information will validate or reject
a prominent theory of neural network organization, and provide unprecedented insight into a poorly
understood but critical brain function.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/753608 |
Start date: | 01-03-2017 |
End date: | 28-02-2019 |
Total budget - Public funding: | 196 400,40 Euro - 196 400,00 Euro |
Cordis data
Original description
Head direction (HD) cells provide directional information during spatial navigation and thus act as aninternal compass. The goal of this study is to understand how the HD circuit creates a lasting neural trace of
transient directional changes. Cells selective for HD have been identified in several brain regions, including
the retrosplenial cortex (RSC), and display persistent activity in response to transient vestibular turning
cues. Although a well-established theoretical framework proposes an elegant circuitry for achieving this
self-sustaining activity, biological evidence for such a circuit is lacking. Studies of HD circuitry have faced
significant challenges due to the necessity of functional monitoring at large and small scales in vivo, and
precise stimulus control. This study will take advantage of recent advances allowing the targeting of specific
cells and their inputs for chronic two-photon imaging in the awake, head-fixed, and passively rotated mouse.
Experiments will aim to (1) determine the spatial and temporal organization of HD-tuned responses in RSC,
and (2) functionally characterize the presynaptic inputs of HD cells. This information will validate or reject
a prominent theory of neural network organization, and provide unprecedented insight into a poorly
understood but critical brain function.
Status
CLOSEDCall topic
MSCA-IF-2016Update Date
28-04-2024
Images
No images available.
Geographical location(s)