TRIWIND | A novel and versatile 3-tower maritime structure for the cost-efficient installation of all-sizes offshore wind turbines.

Summary
The TRIWIND project is the result of a project initiated by Berenguer Ingenieros one year ago, which has resulted in a patented technology (application number: P201631043) for the cost-efficient installation of offshore wind farms. Following the R&D stage already accomplished and the patent application, the ultimate goal we seek in the project is to complete the prototyping stage and testing studies to reach its commercial appetite and value for leading companies of the wind energy sector such as Siemens and MHI Vestas, which account for more than 80% of the wind turbine manufacturers market share only in Europe.
This is an innovative foundation solution for offshore wind turbines that directly impacts on (1) production costs reducing on circa 30%; (2) on transportation (self-buoyant) and installation (self-installed) with a combined costs savings of 86.5% and operational average time reduction from 12-20h to 3h and; (3) it also affects on the decommissioning phase by 50% reduction. All these costs savings represent circa 16.7% of the total costs of an offshore wind turbine life-cycle. Other crucial aspects are related to structure’s duration extension and less maintenance requirements, technical and operational easiness in all previous phases along with health and safety improvements.
For this phase 1, we will perform a feasibility study including: (1) technical feasibility, 2) operational/financial feasibility and 3) commercial feasibility.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/773657
Start date: 01-06-2017
End date: 31-10-2017
Total budget - Public funding: 71 429,00 Euro - 50 000,00 Euro
Cordis data

Original description

The TRIWIND project is the result of a project initiated by Berenguer Ingenieros one year ago, which has resulted in a patented technology (application number: P201631043) for the cost-efficient installation of offshore wind farms. Following the R&D stage already accomplished and the patent application, the ultimate goal we seek in the project is to complete the prototyping stage and testing studies to reach its commercial appetite and value for leading companies of the wind energy sector such as Siemens and MHI Vestas, which account for more than 80% of the wind turbine manufacturers market share only in Europe.
This is an innovative foundation solution for offshore wind turbines that directly impacts on (1) production costs reducing on circa 30%; (2) on transportation (self-buoyant) and installation (self-installed) with a combined costs savings of 86.5% and operational average time reduction from 12-20h to 3h and; (3) it also affects on the decommissioning phase by 50% reduction. All these costs savings represent circa 16.7% of the total costs of an offshore wind turbine life-cycle. Other crucial aspects are related to structure’s duration extension and less maintenance requirements, technical and operational easiness in all previous phases along with health and safety improvements.
For this phase 1, we will perform a feasibility study including: (1) technical feasibility, 2) operational/financial feasibility and 3) commercial feasibility.

Status

CLOSED

Call topic

SMEInst-09-2016-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.0. INDUSTRIAL LEADERSHIP - ICT - Cross-cutting calls
H2020-SMEINST-1-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-SMEINST-2-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-EU.2.3. INDUSTRIAL LEADERSHIP - Innovation In SMEs
H2020-EU.2.3.1. Mainstreaming SME support, especially through a dedicated instrument
H2020-SMEINST-1-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-SMEINST-2-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.3. SOCIETAL CHALLENGES - Secure, clean and efficient energy
H2020-EU.3.3.0. Cross-cutting call topics
H2020-SMEINST-1-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system
H2020-SMEINST-2-2016-2017
SMEInst-09-2016-2017 Stimulating the innovation potential of SMEs for a low carbon and efficient energy system