Summary
The Palaeogene period in the early Cenozoic (66 – 23 million year ago) saw the transition of the Earth’s climate state from Greenhouse (with no polar ice-caps, as characterised the entire Mesozoic) to Icehouse (as we see today with Polar ice caps). Understanding the dynamics in climate during such an unstable period of Earth’s climatic history is crucial for accurate forecasting of future climate change under anthropogenically-elevated atmospheric CO2. Whilst many studies have looked at particular episodes during this period (focusing on hyperthermals or the descent to icehouse in the Oligocene), there is a lack of studies which look holistically at the entire period. Furthermore, sedimentological evidence that suggests transient cool periods (local or global in scale) may have punctuated the long-term warmth of the early part of the Palaeogene have been largely overlooked as this appears to disagree with published geochemical proxy studies. This project proposes to Investigate Climatic Events, relating Cooling and Ash in the Palaeogene period (ICECAP), by generating a high resolution, multi-proxy temperature reconstruction for the exceptionally well-preserved, continuous Palaeogene succession from northern Denmark, which contain numerous thick ash horizons and enigmatic deposits associated with cold water (“glendonites”). Geochemical analysis and temperature reconstructions for other Palaeogene sites containing cold-water indicators will be undertaken in order to understand the global palaeoclimatic significance of the Danish glendonites.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101024218 |
Start date: | 18-10-2021 |
End date: | 17-10-2023 |
Total budget - Public funding: | 214 158,72 Euro - 214 158,00 Euro |
Cordis data
Original description
The Palaeogene period in the early Cenozoic (66 – 23 million year ago) saw the transition of the Earth’s climate state from Greenhouse (with no polar ice-caps, as characterised the entire Mesozoic) to Icehouse (as we see today with Polar ice caps). Understanding the dynamics in climate during such an unstable period of Earth’s climatic history is crucial for accurate forecasting of future climate change under anthropogenically-elevated atmospheric CO2. Whilst many studies have looked at particular episodes during this period (focusing on hyperthermals or the descent to icehouse in the Oligocene), there is a lack of studies which look holistically at the entire period. Furthermore, sedimentological evidence that suggests transient cool periods (local or global in scale) may have punctuated the long-term warmth of the early part of the Palaeogene have been largely overlooked as this appears to disagree with published geochemical proxy studies. This project proposes to Investigate Climatic Events, relating Cooling and Ash in the Palaeogene period (ICECAP), by generating a high resolution, multi-proxy temperature reconstruction for the exceptionally well-preserved, continuous Palaeogene succession from northern Denmark, which contain numerous thick ash horizons and enigmatic deposits associated with cold water (“glendonites”). Geochemical analysis and temperature reconstructions for other Palaeogene sites containing cold-water indicators will be undertaken in order to understand the global palaeoclimatic significance of the Danish glendonites.Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping