SIGMA | Investigating Internal Magnetic Field Sources on the Moon and Mars

Summary
The Earth possesses an internal magnetic field produced by convection movements occurring in the outer liquid metallic core of the planet, called dynamo. In order to understand how the Earth dynamo mechanisms work, it is required to understand how a planetary dynamo operates as a whole, from its birth to its demise. For this purpose, our inner Solar System provides a natural laboratory.
Today, amongst all our companion telluric planets, only Mercury possesses a core magnetic field. Venus has no observable internal magnetic field, which is enigmatic. Crustal magnetic fields are observed at the surface of Mars and the Moon, which is indicative that these bodies likely had a dynamo in their history, but is no longer active. More importantly, these crustal fields hold fundamental information about the ancient core field, such as its morphology, intensity and temporal variation.
By studying the crustal magnetic fields of other planetary bodies, such as Mercury, the Moon or Mars, where different dynamos might have operated, the dynamo processes themselves can be better understood. The SIGMA project targets to unveil crucial unanswered questions of the Earth global magnetic field evolution through an investigation of different planetary crustal anomalies using a novel methodology of surveys (developed by the host) and the generation of advanced models (expertise of the fellow candidate). The results will have an innovative impact in the imminent planetary exploration, where the candidate would be positioned as a senior and independent researcher with a profile comprising theoretical and experimental pioneering techniques.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/893304
Start date: 17-02-2021
End date: 16-02-2023
Total budget - Public funding: 160 932,48 Euro - 160 932,00 Euro
Cordis data

Original description

The Earth possesses an internal magnetic field produced by convection movements occurring in the outer liquid metallic core of the planet, called dynamo. In order to understand how the Earth dynamo mechanisms work, it is required to understand how a planetary dynamo operates as a whole, from its birth to its demise. For this purpose, our inner Solar System provides a natural laboratory.
Today, amongst all our companion telluric planets, only Mercury possesses a core magnetic field. Venus has no observable internal magnetic field, which is enigmatic. Crustal magnetic fields are observed at the surface of Mars and the Moon, which is indicative that these bodies likely had a dynamo in their history, but is no longer active. More importantly, these crustal fields hold fundamental information about the ancient core field, such as its morphology, intensity and temporal variation.
By studying the crustal magnetic fields of other planetary bodies, such as Mercury, the Moon or Mars, where different dynamos might have operated, the dynamo processes themselves can be better understood. The SIGMA project targets to unveil crucial unanswered questions of the Earth global magnetic field evolution through an investigation of different planetary crustal anomalies using a novel methodology of surveys (developed by the host) and the generation of advanced models (expertise of the fellow candidate). The results will have an innovative impact in the imminent planetary exploration, where the candidate would be positioned as a senior and independent researcher with a profile comprising theoretical and experimental pioneering techniques.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019