EQRESFRAME | Earthquake-resilient self-centering steel frame

Summary
An important requirement of performance-based earthquake engineering is the simultaneous control of structural and non-structural damage. Structural damage measures are related to story drifts, inelastic deformations and residual drifts. Non-structural damage measures are related to story drifts and storey accelerations. Earthquake reconnaissance reports highlight that injuries, fatalities and economical losses related to failure of non-structural components far exceed those related to structural failures. Moreover, explicit consideration of non-structural damage becomes vital in the design of critical facilities such as hospitals carrying acceleration-sensitive medical equipment, which have to remain functional in the aftermath of an earthquake. Structural and non-structural damage results in direct and indirect losses such as repair costs and costly downtime during which the building is repaired and cannot be used or occupied. Therefore, there is an urgent need for minimal-damage structures that can truly achieve seismic resilience.
Researchers have developed self-centering frames with the goal of avoiding residual drifts. Other studies focused on increasing the energy dissipation capacity of structures by adding dampers with the goal of reducing storey drifts and storey accelerations. This project aims to couple, for the first time, self-centring systems and modern seismic energy dissipation systems with the goal of developing a novel earthquake-resilient steel frame. The optimal combined design of the self-centering and energy dissipation mechanisms will lead to a steel frame with superior minimal-damage seismic performance.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/654426
Start date: 31-08-2015
End date: 30-08-2017
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

An important requirement of performance-based earthquake engineering is the simultaneous control of structural and non-structural damage. Structural damage measures are related to story drifts, inelastic deformations and residual drifts. Non-structural damage measures are related to story drifts and storey accelerations. Earthquake reconnaissance reports highlight that injuries, fatalities and economical losses related to failure of non-structural components far exceed those related to structural failures. Moreover, explicit consideration of non-structural damage becomes vital in the design of critical facilities such as hospitals carrying acceleration-sensitive medical equipment, which have to remain functional in the aftermath of an earthquake. Structural and non-structural damage results in direct and indirect losses such as repair costs and costly downtime during which the building is repaired and cannot be used or occupied. Therefore, there is an urgent need for minimal-damage structures that can truly achieve seismic resilience.
Researchers have developed self-centering frames with the goal of avoiding residual drifts. Other studies focused on increasing the energy dissipation capacity of structures by adding dampers with the goal of reducing storey drifts and storey accelerations. This project aims to couple, for the first time, self-centring systems and modern seismic energy dissipation systems with the goal of developing a novel earthquake-resilient steel frame. The optimal combined design of the self-centering and energy dissipation mechanisms will lead to a steel frame with superior minimal-damage seismic performance.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)