SELENDIS | SELENDIS: A novel detection strategy to discover light Dark Matter

Summary
Ordinary matter - which includes stars, galaxies, and the human body - only accounts for 20% of the total mass of the Universe. The missing mass consists of so-called Dark Matter (DM) which, while invisible, betrays its presence through gravitational effects on its surrounding environment. For the past several decades, DM particles have been extensively sought after but yet, keep eluding detection. Why? There is now compelling reasons to believe that these particles are lighter than first-anticipated. As a result, their discovery requires energy detection thresholds and background discrimination capabilities beyond state-of-the-art detector performance. The goal of this research proposal is to enable a potential light DM discovery. To achieve this aim, I want to develop a novel cryogenic detector technology called SELENDIS (Single ELEctron Nuclear recoil DIScrimination). The proposed detector will allow for the first time in DM search history for particle-type identification down to single electrons. After only two weeks of data taking, SELENDIS’ sensitivity to light DM will exceed that of state-of-the-art experiments. Based on my 6 years experience in DM searches, I will develop advanced competencies in cryogenics, cold-electronics, signal treatment, to cite but a few, in a multidisciplinary framework. I will work in a laboratory equipped with a cryostat with world-leading vibration levels within a team of experts in the development of cryogenic detectors for DM searches with EDELWEISS and low-energy neutrino physics with RICOCHET. Hosted in a top-class institution (IPNL/CNRS), this 24-month Marie Curie fellowship will support my future scientific career by providing me with technological competencies, broadening my network opportunities and developing my leadership capabilities. Because SELENDIS represents the next generation of light DM detectors, this research will contribute to European excellence and competitiveness in a frontier research field.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/838537
Start date: 01-04-2019
End date: 31-03-2021
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

Ordinary matter - which includes stars, galaxies, and the human body - only accounts for 20% of the total mass of the Universe. The missing mass consists of so-called Dark Matter (DM) which, while invisible, betrays its presence through gravitational effects on its surrounding environment. For the past several decades, DM particles have been extensively sought after but yet, keep eluding detection. Why? There is now compelling reasons to believe that these particles are lighter than first-anticipated. As a result, their discovery requires energy detection thresholds and background discrimination capabilities beyond state-of-the-art detector performance. The goal of this research proposal is to enable a potential light DM discovery. To achieve this aim, I want to develop a novel cryogenic detector technology called SELENDIS (Single ELEctron Nuclear recoil DIScrimination). The proposed detector will allow for the first time in DM search history for particle-type identification down to single electrons. After only two weeks of data taking, SELENDIS’ sensitivity to light DM will exceed that of state-of-the-art experiments. Based on my 6 years experience in DM searches, I will develop advanced competencies in cryogenics, cold-electronics, signal treatment, to cite but a few, in a multidisciplinary framework. I will work in a laboratory equipped with a cryostat with world-leading vibration levels within a team of experts in the development of cryogenic detectors for DM searches with EDELWEISS and low-energy neutrino physics with RICOCHET. Hosted in a top-class institution (IPNL/CNRS), this 24-month Marie Curie fellowship will support my future scientific career by providing me with technological competencies, broadening my network opportunities and developing my leadership capabilities. Because SELENDIS represents the next generation of light DM detectors, this research will contribute to European excellence and competitiveness in a frontier research field.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018