TRICE QFT | TRapped Ion Coherent Execution of Quantum Fourier Transform

Summary
Quantum computers hold the promise to efficiently solve certain computational problems that would be intractable using conventional computers. The latter are not able to efficiently incorporate quantum phenomena arising with superposition of states or entanglement. In order to realize a large-scale quantum computer, it is imperative to have superior control over the efficiency and reliability of already available quantum operations. Trapped ions, being a scalable quantum system, envisage the experimental realization of a large-scale universal quantum computer. The proposed project will demonstrate a novel route to implement a Quantum Fourier Transform (QFT), a crucial component of many quantum algorithms, in a small-scale quantum information processor based on a string of singly charged ytterbium ions confined in a linear Paul trap. In presence of a magnetic field gradient-induced coupling, simultaneous interaction between all pairs of qubits will be exploited for efficient execution of quantum algorithms. Thus, instead of decomposing a given quantum algorithm into its smallest possible elementary constituents (1- and 2-qubit gates), multi-qubit conditional quantum dynamics will be used to implement a QFT. Experiment and theory will collaborate at all stages to streamline the project. New collaborations will be established allowing to combine the tremendous knowledge and expertise already existing in the field. The breakthroughs envisioned in the project are, to explore and implement simultaneous couplings between N ≥ 4 qubits allowing for efficient execution of quantum algorithms, and to implement a Quantum Fourier Transform with N ≥ 4 qubits pointing into the future capability of realizing a large number factorization using a quantum factoring algorithm. In addition, career development plans are proposed to assist the fellow acquire new skills enabling a high level of professional maturity and independence to lead a successful career in academia.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/657261
Start date: 01-04-2015
End date: 15-05-2017
Total budget - Public funding: 171 460,80 Euro - 171 460,00 Euro
Cordis data

Original description

Quantum computers hold the promise to efficiently solve certain computational problems that would be intractable using conventional computers. The latter are not able to efficiently incorporate quantum phenomena arising with superposition of states or entanglement. In order to realize a large-scale quantum computer, it is imperative to have superior control over the efficiency and reliability of already available quantum operations. Trapped ions, being a scalable quantum system, envisage the experimental realization of a large-scale universal quantum computer. The proposed project will demonstrate a novel route to implement a Quantum Fourier Transform (QFT), a crucial component of many quantum algorithms, in a small-scale quantum information processor based on a string of singly charged ytterbium ions confined in a linear Paul trap. In presence of a magnetic field gradient-induced coupling, simultaneous interaction between all pairs of qubits will be exploited for efficient execution of quantum algorithms. Thus, instead of decomposing a given quantum algorithm into its smallest possible elementary constituents (1- and 2-qubit gates), multi-qubit conditional quantum dynamics will be used to implement a QFT. Experiment and theory will collaborate at all stages to streamline the project. New collaborations will be established allowing to combine the tremendous knowledge and expertise already existing in the field. The breakthroughs envisioned in the project are, to explore and implement simultaneous couplings between N ≥ 4 qubits allowing for efficient execution of quantum algorithms, and to implement a Quantum Fourier Transform with N ≥ 4 qubits pointing into the future capability of realizing a large number factorization using a quantum factoring algorithm. In addition, career development plans are proposed to assist the fellow acquire new skills enabling a high level of professional maturity and independence to lead a successful career in academia.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)