UNIFIED | Fuel injection from subcritical to supercritical P-T conditions: a unified methodology for coupled in-nozzle flow, atomisation and air-fuel mixing processes

Summary
Fossil fuel consumption is expected to almost double over the next 3 decades in order to meet the increasing demand for infrastructure, trade and transportation. Development of engines complying with the forthcoming 2020 emission legislations, relies on the effective design of advanced high-pressure fuel injection systems and represents a key industrial priority. Emissions can be reduced when fuel is injected against air at P-T conditions well above the fuel’s critical point; the prevailing supercritical fluid conditions result to disappearance of the liquid-gas interface, which in turn, reduces vaporisation time and enhances significantly air-fuel mixing. Combination of experiments (outgoing phase) with CFD simulations (return phase) of the in-nozzle flow, fuel atomisation and mixing processes under such conditions form the core subject of the proposed research. The experimental work includes currently unknown physical properties measurements near the fuel’s critical point; these will be modelled with complex equations of state for a wide range of P-T conditions. Moreover, the state-of-the-art experimental techniques and equipment of the US host, will be employed for quantifying the near-nozzle fuel atomisation and mixing at those conditions. These experimental data will guide the development and validation of a new state-of-the-art CFD model able to couple the aforementioned multi-phase flow processes through a combination of physical models and numerical methods. These include interface capturing of immiscible and diffused interfaces, scale-resolved turbulence, mass transfer rate (cavitation and vaporisation) and real-fluid thermodynamics addressing the compressibility effects for the liquid-vapour-air mixture. The project brings together research, academic and industrial experts from the US and Europe. It will advance scientific knowledge and will facilitate the design of less polluting engines for the benefit of the European area and society as a whole.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/748784
Start date: 08-10-2018
End date: 07-10-2021
Total budget - Public funding: 251 857,80 Euro - 251 857,00 Euro
Cordis data

Original description

Fossil fuel consumption is expected to almost double over the next 3 decades in order to meet the increasing demand for infrastructure, trade and transportation. Development of engines complying with the forthcoming 2020 emission legislations, relies on the effective design of advanced high-pressure fuel injection systems and represents a key industrial priority. Emissions can be reduced when fuel is injected against air at P-T conditions well above the fuel’s critical point; the prevailing supercritical fluid conditions result to disappearance of the liquid-gas interface, which in turn, reduces vaporisation time and enhances significantly air-fuel mixing. Combination of experiments (outgoing phase) with CFD simulations (return phase) of the in-nozzle flow, fuel atomisation and mixing processes under such conditions form the core subject of the proposed research. The experimental work includes currently unknown physical properties measurements near the fuel’s critical point; these will be modelled with complex equations of state for a wide range of P-T conditions. Moreover, the state-of-the-art experimental techniques and equipment of the US host, will be employed for quantifying the near-nozzle fuel atomisation and mixing at those conditions. These experimental data will guide the development and validation of a new state-of-the-art CFD model able to couple the aforementioned multi-phase flow processes through a combination of physical models and numerical methods. These include interface capturing of immiscible and diffused interfaces, scale-resolved turbulence, mass transfer rate (cavitation and vaporisation) and real-fluid thermodynamics addressing the compressibility effects for the liquid-vapour-air mixture. The project brings together research, academic and industrial experts from the US and Europe. It will advance scientific knowledge and will facilitate the design of less polluting engines for the benefit of the European area and society as a whole.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016