XmonMASER | Josephson maser and heat transport in dissipative open quantum systems

Summary
My proposal is devoted to study the heat transport in dissipative open quantum systems. My main scientific and technological goals are: (i) to study the effect of anharmonicity in the heat transport in a dissipative open quantum system; and (ii) to realize a Josephson maser, to demonstrate coherent emission of microwave photons driven by a superconducting transmon qubit. To study heat transport in the quantum limit I propose a device with a qubit coupled to two resonators, each terminated by mesoscopic normal-metal reservoirs acting as source and drain thermal baths. When a thermal bias is applied across the system, the heat is transmitted between the two mesoscopic reservoirs via the qubit, and dissipated in the drain reservoir. With a sufficiently electron temperature in the heated reservoir, the population inversion prerequisite will be satisfied, and the proposed system will work as a maser, allowing for efficient on-chip generation of coherent microwave photons at low temperatures. The proposed system provides a platform to study the heat transport in dissipative open quantum systems, and both spontaneous and stimulated microwave emission. Therefore, I will contribute a pioneering technology to the field of quantum technology, and environment engineering for quantum technologies, in addition to developing a promising tool for quantum thermodynamics. The fundamental knowledge of quantum physics targeted in my proposal will be immediately applicable in several applied fields; the microelectronics industry, quantum computers, and communication sectors, and it will have a great impact on society both in Europe and globally. This fellowship will advance my career plans, enabling me to become an expert in circuit quantum thermodynamics, and receive leadership and management-oriented training. In return, I will transfer my theoretical and experimental knowledge in quantum photonics and optics obtained during my PhD to PICO group.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/843706
Start date: 01-05-2019
End date: 30-04-2021
Total budget - Public funding: 190 680,96 Euro - 190 680,00 Euro
Cordis data

Original description

My proposal is devoted to study the heat transport in dissipative open quantum systems. My main scientific and technological goals are: (i) to study the effect of anharmonicity in the heat transport in a dissipative open quantum system; and (ii) to realize a Josephson maser, to demonstrate coherent emission of microwave photons driven by a superconducting transmon qubit. To study heat transport in the quantum limit I propose a device with a qubit coupled to two resonators, each terminated by mesoscopic normal-metal reservoirs acting as source and drain thermal baths. When a thermal bias is applied across the system, the heat is transmitted between the two mesoscopic reservoirs via the qubit, and dissipated in the drain reservoir. With a sufficiently electron temperature in the heated reservoir, the population inversion prerequisite will be satisfied, and the proposed system will work as a maser, allowing for efficient on-chip generation of coherent microwave photons at low temperatures. The proposed system provides a platform to study the heat transport in dissipative open quantum systems, and both spontaneous and stimulated microwave emission. Therefore, I will contribute a pioneering technology to the field of quantum technology, and environment engineering for quantum technologies, in addition to developing a promising tool for quantum thermodynamics. The fundamental knowledge of quantum physics targeted in my proposal will be immediately applicable in several applied fields; the microelectronics industry, quantum computers, and communication sectors, and it will have a great impact on society both in Europe and globally. This fellowship will advance my career plans, enabling me to become an expert in circuit quantum thermodynamics, and receive leadership and management-oriented training. In return, I will transfer my theoretical and experimental knowledge in quantum photonics and optics obtained during my PhD to PICO group.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018