GraCerLit | GraCerLit – Development of Functionally Graded Ceramics by Lithography-based Ceramic Manufacturing (LCM)

Summary
Functionally Graded Materials (FGMs) were developed for applications where a continuous, stepped or spatial change in composition and/or microstructure is required. In recent years, an interest has been given to Functionally Graded Ceramics (FGCs) since high-complex technical ceramics are increasingly requested in almost every field of applications. In the past, conventional methods have been used for the production of FGC components. However, these methods have limitations in production of custom and complex-shaped ceramic parts. Lithography-based Ceramic Manufacturing (LCM), a recently developed additive manufacturing method by Lithoz GmbH and is used successfully for the cost-efficient, fast and near-net-shape production of monolithic ceramics. In the GraCerLit project, a new LCM printing setup will be designed and the open platform LCM printer prototype will be adapted that allows manufacturing of ceramic-ceramic FGCs without composition and geometry limitations. FGC samples will be produced and characterized in terms of mechanical, physical and microstructural properties. The process-structure-property (PSP) relations of FGC samples will be established through regression analysis by applying Machine Learning (ML) algorithms. The project will be carried out by the experienced researcher (ER) Dr. -Ing. Serkan Nohut who has wide experience on statistical characterization of advanced ceramics and generation of PSP relations. The ER will collaborate with the supervisor Dr. Martin Schwentenwein who has a strong background in manufacturing ceramic components by LCM method and experience on execution and management of EU funded research projects. The technical knowledge and professional skills that will be gained by the ER during the GraCerLit project will make great contributions for his future career development and provide him opportunities to participate in international research projects by cooperating with prestigious research institutes.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101020104
Start date: 01-08-2021
End date: 31-07-2023
Total budget - Public funding: 186 167,04 Euro - 186 167,00 Euro
Cordis data

Original description

Functionally Graded Materials (FGMs) were developed for applications where a continuous, stepped or spatial change in composition and/or microstructure is required. In recent years, an interest has been given to Functionally Graded Ceramics (FGCs) since high-complex technical ceramics are increasingly requested in almost every field of applications. In the past, conventional methods have been used for the production of FGC components. However, these methods have limitations in production of custom and complex-shaped ceramic parts. Lithography-based Ceramic Manufacturing (LCM), a recently developed additive manufacturing method by Lithoz GmbH and is used successfully for the cost-efficient, fast and near-net-shape production of monolithic ceramics. In the GraCerLit project, a new LCM printing setup will be designed and the open platform LCM printer prototype will be adapted that allows manufacturing of ceramic-ceramic FGCs without composition and geometry limitations. FGC samples will be produced and characterized in terms of mechanical, physical and microstructural properties. The process-structure-property (PSP) relations of FGC samples will be established through regression analysis by applying Machine Learning (ML) algorithms. The project will be carried out by the experienced researcher (ER) Dr. -Ing. Serkan Nohut who has wide experience on statistical characterization of advanced ceramics and generation of PSP relations. The ER will collaborate with the supervisor Dr. Martin Schwentenwein who has a strong background in manufacturing ceramic components by LCM method and experience on execution and management of EU funded research projects. The technical knowledge and professional skills that will be gained by the ER during the GraCerLit project will make great contributions for his future career development and provide him opportunities to participate in international research projects by cooperating with prestigious research institutes.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships