PredAlgoBC | Machine learning prediction for breast cancer therapy

Summary
Breast cancer is the cancer with the highest incidence in women worldwide, and is the leading cause of cancer-related death, mainly due to treatment resistance. Recently, tumor heterogeneity has been described as one of the key driver in treatment failure. Indeed, tumor is not a homogeneous entity to treat, but a complex association of subclonal populations driven by their own genetic alterations, and immune and stromal cells from microenvironment. Breast cancer subtypes and tumor heterogeneity advocate for the development of tailored, personalized treatments, but so far, the discovery of efficient predictive markers has been compromised by the lack of adapted biological models and methodological tools.
The recent developments of high-throughput methods for bulk and single-cell analyses has generated large ‘omics’ datasets from patients, stored in open access databases (ArrayExpress, GEO). Combining these numerous datasets will grant a sufficient statistical power to reveal a comprehensive overview of tumor complexity. However, this data mining is currently limited by methodological challenges like cross-platform normalization and the difficulty to analyze complex data structure with high dimension observations. To overcome these issues, I propose to implement a multidisciplinary project at the interface between mathematics, biology, and information technologies.
With the support of the mathematicians and bioinformaticians from the Bioinfomics unit of the regional comprehensive cancer center (ICO), I will develop and implement machine-learning algorithms in the search of predictive biomarkers for breast cancer treatment. This innovative strategy will lead to personalized medicine in breast cancer by guiding clinicians in the selection of the optimal therapeutic option. Moreover, this generated pipeline for predictive marker discovery could be further adapted for the treatment of other cancer types.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841313
Start date: 01-10-2019
End date: 30-09-2021
Total budget - Public funding: 184 707,84 Euro - 184 707,00 Euro
Cordis data

Original description

Breast cancer is the cancer with the highest incidence in women worldwide, and is the leading cause of cancer-related death, mainly due to treatment resistance. Recently, tumor heterogeneity has been described as one of the key driver in treatment failure. Indeed, tumor is not a homogeneous entity to treat, but a complex association of subclonal populations driven by their own genetic alterations, and immune and stromal cells from microenvironment. Breast cancer subtypes and tumor heterogeneity advocate for the development of tailored, personalized treatments, but so far, the discovery of efficient predictive markers has been compromised by the lack of adapted biological models and methodological tools.
The recent developments of high-throughput methods for bulk and single-cell analyses has generated large ‘omics’ datasets from patients, stored in open access databases (ArrayExpress, GEO). Combining these numerous datasets will grant a sufficient statistical power to reveal a comprehensive overview of tumor complexity. However, this data mining is currently limited by methodological challenges like cross-platform normalization and the difficulty to analyze complex data structure with high dimension observations. To overcome these issues, I propose to implement a multidisciplinary project at the interface between mathematics, biology, and information technologies.
With the support of the mathematicians and bioinformaticians from the Bioinfomics unit of the regional comprehensive cancer center (ICO), I will develop and implement machine-learning algorithms in the search of predictive biomarkers for breast cancer treatment. This innovative strategy will lead to personalized medicine in breast cancer by guiding clinicians in the selection of the optimal therapeutic option. Moreover, this generated pipeline for predictive marker discovery could be further adapted for the treatment of other cancer types.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018