PMOHR | Probabilistic modelling of electronic health records

Summary
The growing worldwide adoption of Electronic Health Records (EHR) enables new research opportunities to analyse massive amounts of medical information, motivated by the promise of improving health systems while providing significant budget savings. Biomedical research increasingly uses machine learning methods as a data-driven approach to learn complex comorbidity patterns of diseases, study drug interactions, and form predictions. The analysis of EHRs may not only lead to knowledge discovery, but it also facilitates personalised medical treatment and early diagnosis of the diseases through the design of clinical support systems.

However, current approaches for the analysis of EHRs are still in their early stages. The two main technical challenges that need to be addressed are integration of heterogeneous data and scalability to massive datasets. Most of the existing methods are tailored to homogeneous data and, therefore, to a single source of information, and hence they cannot handle EHR datasets. Scalability also represents a difficulty for most of the current machine learning techniques, which are limited to the analysis to moderate-sized datasets.

In this project, we will develop novel tools for the analysis of heterogeneous EHR data. Our approach will be based on probabilistic modelling techniques, since they are an effective approach for understanding real-world data in many areas of science. We will make use of Bayesian nonparametric modelling techniques, coupled with stochastic variational inference to allow for scalable inference. Probabilistic models, including BNPs, are amenable to both descriptive and predictive analysis at the same time. We will collaborate with the Department of Biomedical Informatics, who will provide their knowledge about the problem, allowing for good model formulations and results analysis.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/706760
Start date: 01-10-2016
End date: 30-09-2019
Total budget - Public funding: 269 857,80 Euro - 269 857,00 Euro
Cordis data

Original description

The growing worldwide adoption of Electronic Health Records (EHR) enables new research opportunities to analyse massive amounts of medical information, motivated by the promise of improving health systems while providing significant budget savings. Biomedical research increasingly uses machine learning methods as a data-driven approach to learn complex comorbidity patterns of diseases, study drug interactions, and form predictions. The analysis of EHRs may not only lead to knowledge discovery, but it also facilitates personalised medical treatment and early diagnosis of the diseases through the design of clinical support systems.

However, current approaches for the analysis of EHRs are still in their early stages. The two main technical challenges that need to be addressed are integration of heterogeneous data and scalability to massive datasets. Most of the existing methods are tailored to homogeneous data and, therefore, to a single source of information, and hence they cannot handle EHR datasets. Scalability also represents a difficulty for most of the current machine learning techniques, which are limited to the analysis to moderate-sized datasets.

In this project, we will develop novel tools for the analysis of heterogeneous EHR data. Our approach will be based on probabilistic modelling techniques, since they are an effective approach for understanding real-world data in many areas of science. We will make use of Bayesian nonparametric modelling techniques, coupled with stochastic variational inference to allow for scalable inference. Probabilistic models, including BNPs, are amenable to both descriptive and predictive analysis at the same time. We will collaborate with the Department of Biomedical Informatics, who will provide their knowledge about the problem, allowing for good model formulations and results analysis.

Status

CLOSED

Call topic

MSCA-IF-2015-GF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-GF Marie Skłodowska-Curie Individual Fellowships (IF-GF)