PythiaPlus | Machine Learning for the Study of Ancient Epigraphic Cultures

Summary
PythiaPlus proposes to explore and interpret the nature of the epigraphic cultures of the ancient Mediterranean using Artificial Intelligence. Specifically, it will use Machine Learning (ML) models to trace distinctiveness and change in the Greek and Roman epigraphic evidence on an unprecedented large scale and in unparalleled detail, revealing new insights in linguistic and cultural interactions.
Inscriptions are primary evidence for reconstructing the history and thought of the ancient world, due to their large number and variety in content. However, the chronological development and regional diffusion of inscriptions are not uniform. No print or digital resources exist allowing a precise quantification of inscriptions by time and place, and current approaches are generally confined to specific languages or localised case studies. Recent advances in ML can overcome these limitations: ML is a field of Artificial Intelligence that allows statistical models to discover patterns in large datasets, and learn meaningful representations of them. Because such models can train over vast amounts of data, they can overcome the limitations in quantification and breadth of analysis of current resources and approaches.
By revolutionising our ability to access and analyse the epigraphic data through the implementation of advanced digital technologies, this research will enable and undertake the interpretation of the epigraphic patterns and parallels discovered by ML models across the texts and metadata of thousands of Greek and Latin inscriptions. PythiaPlus will transform our understanding of the use of epigraphic communication and the nature of cultural interference within the written and indirectly spoken languages of the ancient world, making a substantial contribution to the study of Epigraphy and the Historical Sciences.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026185
Start date: 15-11-2021
End date: 14-11-2023
Total budget - Public funding: 171 473,28 Euro - 171 473,00 Euro
Cordis data

Original description

PythiaPlus proposes to explore and interpret the nature of the epigraphic cultures of the ancient Mediterranean using Artificial Intelligence. Specifically, it will use Machine Learning (ML) models to trace distinctiveness and change in the Greek and Roman epigraphic evidence on an unprecedented large scale and in unparalleled detail, revealing new insights in linguistic and cultural interactions.
Inscriptions are primary evidence for reconstructing the history and thought of the ancient world, due to their large number and variety in content. However, the chronological development and regional diffusion of inscriptions are not uniform. No print or digital resources exist allowing a precise quantification of inscriptions by time and place, and current approaches are generally confined to specific languages or localised case studies. Recent advances in ML can overcome these limitations: ML is a field of Artificial Intelligence that allows statistical models to discover patterns in large datasets, and learn meaningful representations of them. Because such models can train over vast amounts of data, they can overcome the limitations in quantification and breadth of analysis of current resources and approaches.
By revolutionising our ability to access and analyse the epigraphic data through the implementation of advanced digital technologies, this research will enable and undertake the interpretation of the epigraphic patterns and parallels discovered by ML models across the texts and metadata of thousands of Greek and Latin inscriptions. PythiaPlus will transform our understanding of the use of epigraphic communication and the nature of cultural interference within the written and indirectly spoken languages of the ancient world, making a substantial contribution to the study of Epigraphy and the Historical Sciences.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships