QuantOrder | Finding Order in Large-scale Structures by Quantum Computing

Summary
Quantum computing is an emerging, interdisciplinary field of science in the intersection of computer science, mathematics and physics. Recent experimental advances in building a physical quantum computer show the urgency of finding possible applications. On the other hand to date we only have very small quantum computers, which are mostly useful for proof of concept demonstrations, thus for the time being one needs to focus on building and understanding the underlying mathematical theory. A particularly interesting aspect of quantum computing is quantum machine learning, which also needs a more firm theoretical understanding, because many of the recent developments are based on heuristic approaches which cannot be properly tested yet, due to the limitations of the available hardware.

This proposal outlines new approaches and ideas for quantum algorithm development, and attempts to improve some aspects of the theory of quantum machine learning, while also encompasses some fundamental theoretical questions. The described ideas are all related to the problem of finding large-scale structures in various objects. Since quantum computers tend to be quite efficient at recognizing patterns, it is a promising angle of approach. The relevant ideas are inspired by multiple related disciplines, and several of the proposed tools were recently co-developed by the applicant.

The supervisor has an outstanding track record in developing the mathematical theory of large-scale structures emerging in graphs, groups and networks, while the applicant has demonstrated strong problem solving skills and the ability of developing novel quantum algorithms, which promises a fruitful collaboration in the implementation of the proposed action.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/891889
Start date: 01-09-2021
End date: 30-08-2025
Total budget - Public funding: 139 850,88 Euro - 139 850,00 Euro
Cordis data

Original description

Quantum computing is an emerging, interdisciplinary field of science in the intersection of computer science, mathematics and physics. Recent experimental advances in building a physical quantum computer show the urgency of finding possible applications. On the other hand to date we only have very small quantum computers, which are mostly useful for proof of concept demonstrations, thus for the time being one needs to focus on building and understanding the underlying mathematical theory. A particularly interesting aspect of quantum computing is quantum machine learning, which also needs a more firm theoretical understanding, because many of the recent developments are based on heuristic approaches which cannot be properly tested yet, due to the limitations of the available hardware.

This proposal outlines new approaches and ideas for quantum algorithm development, and attempts to improve some aspects of the theory of quantum machine learning, while also encompasses some fundamental theoretical questions. The described ideas are all related to the problem of finding large-scale structures in various objects. Since quantum computers tend to be quite efficient at recognizing patterns, it is a promising angle of approach. The relevant ideas are inspired by multiple related disciplines, and several of the proposed tools were recently co-developed by the applicant.

The supervisor has an outstanding track record in developing the mathematical theory of large-scale structures emerging in graphs, groups and networks, while the applicant has demonstrated strong problem solving skills and the ability of developing novel quantum algorithms, which promises a fruitful collaboration in the implementation of the proposed action.

Status

SIGNED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019