ARTIST | ARTificial Intelligence for Seasonal forecast of Temperature extremes

Summary
Seasonal Forecasts are critical tools for early-warning decision support systems, that can help reduce the related risk associated with hot or cold weather and other events that can strongly affect a multitude of socio-economic sectors. Recent advances in both statistical approaches and numerical modeling have improved the skill of Seasonal Forecasts. However, especially in mid-latitudes, they are still affected by large uncertainties that make their application often complicated.
The ARTIST project aims at improving our knowledge of climate predictability at the seasonal time-scale, focusing on the role of unexplored drivers, to finally enhance the performance of current prediction systems. This effort is meant to reduce uncertainties and make forecasts efficiently usable by regional met-services and private bodies. A statistical/dynamical hybrid model will be designed through the synthesis of (a) a cutting-edge dynamical Seasonal Prediction System and (b) a statistical model based on advanced Machine Learning (ML) techniques. Such a hybrid approach may become critical to improve climate forecasts, because it combines the theoretical foundation and interpretability of physical modeling with the power of Artificial Intelligence (AI), that can reveal unknown or disregarded spatio-temporal features.
ARTIST will focus on seasonal prediction of temperature hot/cold extremes in Europe, but its scalable nature can make it applicable across a wide range of variables and geographical areas. Besides the employment of AI, a strength of the action stands in the use of local land surface predictors to instruct the empirical model.
The fellowship, which includes a variety of training activities, will be mainly conducted at the Barcelona Supercomputing Centre (Spain), a world-renowned institute for climate predictions and applications. A secondment period is projected at the Max Planck Institute for BGC (Germany), prominent in land studies and ML employment in earth science.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101033654
Start date: 01-04-2022
End date: 31-03-2024
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

Seasonal Forecasts are critical tools for early-warning decision support systems, that can help reduce the related risk associated with hot or cold weather and other events that can strongly affect a multitude of socio-economic sectors. Recent advances in both statistical approaches and numerical modeling have improved the skill of Seasonal Forecasts. However, especially in mid-latitudes, they are still affected by large uncertainties that make their application often complicated.
The ARTIST project aims at improving our knowledge of climate predictability at the seasonal time-scale, focusing on the role of unexplored drivers, to finally enhance the performance of current prediction systems. This effort is meant to reduce uncertainties and make forecasts efficiently usable by regional met-services and private bodies. A statistical/dynamical hybrid model will be designed through the synthesis of (a) a cutting-edge dynamical Seasonal Prediction System and (b) a statistical model based on advanced Machine Learning (ML) techniques. Such a hybrid approach may become critical to improve climate forecasts, because it combines the theoretical foundation and interpretability of physical modeling with the power of Artificial Intelligence (AI), that can reveal unknown or disregarded spatio-temporal features.
ARTIST will focus on seasonal prediction of temperature hot/cold extremes in Europe, but its scalable nature can make it applicable across a wide range of variables and geographical areas. Besides the employment of AI, a strength of the action stands in the use of local land surface predictors to instruct the empirical model.
The fellowship, which includes a variety of training activities, will be mainly conducted at the Barcelona Supercomputing Centre (Spain), a world-renowned institute for climate predictions and applications. A secondment period is projected at the Max Planck Institute for BGC (Germany), prominent in land studies and ML employment in earth science.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships