E-MUSE | Complex microbial ecosystems multiscale modelling: mechanistic and data driven approaches integration.

Summary
European dairy industry is an important agri-food sector; it represents more than 300,000 jobs and 10 billion € positive trade balance. Five out of the ten top global dairy companies are European and more than 80% of European companies are SMEs. More than 300 cheeses and dairy products are sold all over the world and are protected as geographical indications or traditional specialties. Mastering cheese-ripening processes to avoid sanitary risk and waste, and produce typical cheeses with organoleptic properties valued by the consumers is of economic and social significance. E-MUSE aims to develop innovative modelling methodologies to improve knowledge about complex biological systems and to control and/or predict their evolution by combining artificial intelligence and systems biology. This multidisciplinary strategy integrating genome-scale metabolic models, dynamic modelling methodologies, together with the design of efficient statistical and machine learning tools, will allow analysing of multi-omics data and linking the results to macro-scale properties related to cheese ripening and consumer preference. Bioinformatics has addressed this issue by data mining; however, a gap still exists between the molecular scale information and the macroscopic properties that E-MUSE will contribute to fill. Moreover, in the context of sustainable development, more and more consumers are diversifying their diet and consume plant-based food. Introduction of plant-based proteins in the cheese process brings issues such as bitterness or safety. Modelling strategies from the E-MUSE project will help to target and solve these issues. Finally, E-MUSE will train researchers with multidisciplinary skills in mathematics, bioinformatics and/or biology to design and use innovative multiscale modelling methodologies, with the ultimate outcome of a dynamic modelling software giving researchers a harmonised language to address future research questions about complex biological systems.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/956126
Start date: 01-01-2021
End date: 30-06-2025
Total budget - Public funding: 3 901 305,60 Euro - 3 901 305,00 Euro
Cordis data

Original description

European dairy industry is an important agri-food sector; it represents more than 300,000 jobs and 10 billion € positive trade balance. Five out of the ten top global dairy companies are European and more than 80% of European companies are SMEs. More than 300 cheeses and dairy products are sold all over the world and are protected as geographical indications or traditional specialties. Mastering cheese-ripening processes to avoid sanitary risk and waste, and produce typical cheeses with organoleptic properties valued by the consumers is of economic and social significance. E-MUSE aims to develop innovative modelling methodologies to improve knowledge about complex biological systems and to control and/or predict their evolution by combining artificial intelligence and systems biology. This multidisciplinary strategy integrating genome-scale metabolic models, dynamic modelling methodologies, together with the design of efficient statistical and machine learning tools, will allow analysing of multi-omics data and linking the results to macro-scale properties related to cheese ripening and consumer preference. Bioinformatics has addressed this issue by data mining; however, a gap still exists between the molecular scale information and the macroscopic properties that E-MUSE will contribute to fill. Moreover, in the context of sustainable development, more and more consumers are diversifying their diet and consume plant-based food. Introduction of plant-based proteins in the cheese process brings issues such as bitterness or safety. Modelling strategies from the E-MUSE project will help to target and solve these issues. Finally, E-MUSE will train researchers with multidisciplinary skills in mathematics, bioinformatics and/or biology to design and use innovative multiscale modelling methodologies, with the ultimate outcome of a dynamic modelling software giving researchers a harmonised language to address future research questions about complex biological systems.

Status

SIGNED

Call topic

MSCA-ITN-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2020
MSCA-ITN-2020