Neuroprosthesis-UI | Neuroprosthesis user interface based on residual motor skills and muscle activity in persons with upper limb disabilities

Summary
In this project, I will develop a user interface that will allow persons with upper limb disabilities to control neuroprosthesis using their residual motor skills. This interface will consist of inertial sensors (IMU) and electromyography (EMG) that are capable of capturing movements and muscle contraction that even persons with high tetraplegia still can control. The interface will also be able to learn different inputs, customizing the system for each user. This requires techniques of machine learning, making it flexible and indicated for users with different upper limb disabilities, such as spinal cord injury, stroke and multiple sclerosis. The machine learning techniques will classify the user inputs into desired commands, working as an intention decoder. The interface will be used to control a hybrid upper limb neuroprosthesis based on surface functional electrical stimulation (FES) and a semi passive mechanical orthosis. The system will allow users to perform activities of daily life independently. To my knowledge, such a hybrid system with FES, and controlled by an interface based on IMUs, EMG and machine learning techniques is novel. I will be working with Christine Coste, an expert in neuroprosthesis for disabled persons, and her interdisciplinary team, which consist of engineers and health professionals with vast experience in neurorehabilitation. This fellowship will enable the transfer of knowledge between her team and me through experiments with real patients and mutual training. I can contribute to the team with my expertise in machine learning and control, whereas they have vast access to patients, medical doctors, mechanical designers, electrical stimulators and sensors. This project is going to be an important step in my career as expand my network in Europe, develop my skills as a biomedical engineer and improve my research experience towards becoming a world-leading expert in neurorehabilitation engineering.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/899040
Start date: 01-07-2020
End date: 30-06-2022
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

In this project, I will develop a user interface that will allow persons with upper limb disabilities to control neuroprosthesis using their residual motor skills. This interface will consist of inertial sensors (IMU) and electromyography (EMG) that are capable of capturing movements and muscle contraction that even persons with high tetraplegia still can control. The interface will also be able to learn different inputs, customizing the system for each user. This requires techniques of machine learning, making it flexible and indicated for users with different upper limb disabilities, such as spinal cord injury, stroke and multiple sclerosis. The machine learning techniques will classify the user inputs into desired commands, working as an intention decoder. The interface will be used to control a hybrid upper limb neuroprosthesis based on surface functional electrical stimulation (FES) and a semi passive mechanical orthosis. The system will allow users to perform activities of daily life independently. To my knowledge, such a hybrid system with FES, and controlled by an interface based on IMUs, EMG and machine learning techniques is novel. I will be working with Christine Coste, an expert in neuroprosthesis for disabled persons, and her interdisciplinary team, which consist of engineers and health professionals with vast experience in neurorehabilitation. This fellowship will enable the transfer of knowledge between her team and me through experiments with real patients and mutual training. I can contribute to the team with my expertise in machine learning and control, whereas they have vast access to patients, medical doctors, mechanical designers, electrical stimulators and sensors. This project is going to be an important step in my career as expand my network in Europe, develop my skills as a biomedical engineer and improve my research experience towards becoming a world-leading expert in neurorehabilitation engineering.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019