WIKOLLECT | Workflows for the Large-Scale Collection and Transference of Knowledge across Languages: Using Natural Language Processing to Produce High-Quality Contents with Language Learners

Summary
WiKollect aims at creating a workflow for the large-scale transference of high-quality contents across languages. The workflow is divided in four cyclic steps. In step (i) an automatic model will identify contents available in a document in language A which are missing in a document, on the same topic, in language B. In step (ii) candidates to fill the gaps in the document in language B will be automatically generated. In step (iii) such candidates will be subject to manual evaluation by language learners. In step (iv) the contents identified as high-quality will be promoted to fill the gaps in the document in language B. WiKollect will take advantage of the barely-exploited synergy among natural language processing, language learning, and crowdsourcing. To address the different research challenges posed by the workflow design and implementation, it will create an innovative and re-usable hybrid intelligence architecture combining (a) artificial intelligence —such as machine learning and natural language processing— to identify contents worth transferring across languages and generate potential translations and (b) human intelligence —by means of implicit crowdsourcing— relying on a crowd of language learners to flag good contents. WiKollect will create different by-products in addition to the research products that will be generated by addressing each step in the four-step workflow. Language learning exercises on specific topics and complexity levels will be generated. The fair re-use of contents across languages will be promoted with the mass production of high-quality contents. During the MSC period, WiKollect will target the generation of Wiktionary contents in Italian and German. Still, the workflow is flexible and extendable and can be applied to other documents (e.g., Wikipedia articles, news) and languages in the near future.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/845320
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 183 473,28 Euro - 183 473,00 Euro
Cordis data

Original description

WiKollect aims at creating a workflow for the large-scale transference of high-quality contents across languages. The workflow is divided in four cyclic steps. In step (i) an automatic model will identify contents available in a document in language A which are missing in a document, on the same topic, in language B. In step (ii) candidates to fill the gaps in the document in language B will be automatically generated. In step (iii) such candidates will be subject to manual evaluation by language learners. In step (iv) the contents identified as high-quality will be promoted to fill the gaps in the document in language B. WiKollect will take advantage of the barely-exploited synergy among natural language processing, language learning, and crowdsourcing. To address the different research challenges posed by the workflow design and implementation, it will create an innovative and re-usable hybrid intelligence architecture combining (a) artificial intelligence —such as machine learning and natural language processing— to identify contents worth transferring across languages and generate potential translations and (b) human intelligence —by means of implicit crowdsourcing— relying on a crowd of language learners to flag good contents. WiKollect will create different by-products in addition to the research products that will be generated by addressing each step in the four-step workflow. Language learning exercises on specific topics and complexity levels will be generated. The fair re-use of contents across languages will be promoted with the mass production of high-quality contents. During the MSC period, WiKollect will target the generation of Wiktionary contents in Italian and German. Still, the workflow is flexible and extendable and can be applied to other documents (e.g., Wikipedia articles, news) and languages in the near future.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018