Eco-CosmePharm | Computational 'eco-toxicity' assessment of pharmaceutical and cosmetics materials, an approach towards a green and sustainable environment

Summary
The main goal of the proposed research project is the computational evaluation of eco-toxicity (diverse endpoints) of various chemicals that are vastly utilized and produced by the pharmaceutical and cosmetic industries, such as green solvents (including future ones, i.e., ionic liquids and deep eutectic solvents) and active pharmaceutical ingredients (API).

We will be majorly focusing on toxicity in aquatic environment, where the toxicity data will cover four trophic levels of aquatic organisms, i.e., fish (vertebrates), invertebrates such as daphnids, algae (aquatic plants), and microorganisms. The toxicity related properties that will be studied include acute and chronic toxicity, biodegradation and bioaccumulation.

The research methodology to perform toxicity assessment and for understanding the structural features responsible for the eco-toxicity, will involve diverse Artificial Intelligence (AI) and chemoinformatics techniques like Quantitative Structure-Activity Relationship (QSAR), interspecies QSAR (QAAR), toxicophore mapping, virtual screening, similarity search, clustering techniques, multimedia mass-balance (MM) modeling (to understand the distribution profile of chemicals in different environmental compartments), matched molecular pair (MMPs) analysis etc.

The knowledge gained from the study will help in classifying existing chemicals into toxic and non-toxic groups and will also help in designing novel analogues of selected chemical that will show better desirable physicochemical properties with less or no eco-toxicity. This project will also include development of AI software tools and scheming KNIME workflows for various computational tasks.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/845373
Start date: 16-09-2019
End date: 15-09-2021
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

The main goal of the proposed research project is the computational evaluation of eco-toxicity (diverse endpoints) of various chemicals that are vastly utilized and produced by the pharmaceutical and cosmetic industries, such as green solvents (including future ones, i.e., ionic liquids and deep eutectic solvents) and active pharmaceutical ingredients (API).

We will be majorly focusing on toxicity in aquatic environment, where the toxicity data will cover four trophic levels of aquatic organisms, i.e., fish (vertebrates), invertebrates such as daphnids, algae (aquatic plants), and microorganisms. The toxicity related properties that will be studied include acute and chronic toxicity, biodegradation and bioaccumulation.

The research methodology to perform toxicity assessment and for understanding the structural features responsible for the eco-toxicity, will involve diverse Artificial Intelligence (AI) and chemoinformatics techniques like Quantitative Structure-Activity Relationship (QSAR), interspecies QSAR (QAAR), toxicophore mapping, virtual screening, similarity search, clustering techniques, multimedia mass-balance (MM) modeling (to understand the distribution profile of chemicals in different environmental compartments), matched molecular pair (MMPs) analysis etc.

The knowledge gained from the study will help in classifying existing chemicals into toxic and non-toxic groups and will also help in designing novel analogues of selected chemical that will show better desirable physicochemical properties with less or no eco-toxicity. This project will also include development of AI software tools and scheming KNIME workflows for various computational tasks.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018