CYBERNETS | Cybernetic Communication Networks: Fundamental Limits and Engineering Challenges

Summary
This Reintegration Panel proposal, CYBERNETS, focuses on the study of Cybernetic Communication Networks (CCN). CCNs are wireless networks that are context-aware, possess learning capabilities and artificial intelligence to guarantee reliability, efficiency and resilience to changes, failures or attacks via autonomous, self-configuring and self-healing individual and network behavior. Typical examples of CCNs are beyond-5G cellular systems and critical communication systems, e.g., law enforcement, disaster relief, body- area, medical instruments, space, and indoor/outdoor commercial applications. A practical implementation of a CCN requires extending classical communication systems to embrace the dynamics of fully decentralized systems whose components might exhibit either cooperative, non-cooperative or even malicious behaviors to improve individual and/or global performance. In this context, CYBERNETS aims to develop a relevant understanding of the interactions between information theory, game theory and signal processing to tackle two particular problems from both theoretical and practical perspectives: (I) use of feedback and (II) behavior adaptation in fully decentralized CCNs. In the former, the main objectives are: (i) to determine the fundamental limits of data transmission rates in CCNs with feedback; and (ii) to develop and test in real-systems, transmit-receive configurations to provide a proof-of-concept of feedback in CCNs. For the achievement of these practical objectives, CYBERNETS relies on the world-class testbed infrastructure of INRIA at the CITI Lab for fully closing the gap between theoretical analysis and real-system implementation. In the latter, the main objectives are: (i) to identify and explore alternatives for allowing transmitter-receiver pairs to learn equilibrium strategies in CCNs with and without feedback; (ii) to study the impact of network-state knowledge on scenarios derived from the malicious behavior of network components.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/659316
Start date: 01-06-2015
End date: 31-05-2017
Total budget - Public funding: 185 076,00 Euro - 185 076,00 Euro
Cordis data

Original description

This Reintegration Panel proposal, CYBERNETS, focuses on the study of Cybernetic Communication Networks (CCN). CCNs are wireless networks that are context-aware, possess learning capabilities and artificial intelligence to guarantee reliability, efficiency and resilience to changes, failures or attacks via autonomous, self-configuring and self-healing individual and network behavior. Typical examples of CCNs are beyond-5G cellular systems and critical communication systems, e.g., law enforcement, disaster relief, body- area, medical instruments, space, and indoor/outdoor commercial applications. A practical implementation of a CCN requires extending classical communication systems to embrace the dynamics of fully decentralized systems whose components might exhibit either cooperative, non-cooperative or even malicious behaviors to improve individual and/or global performance. In this context, CYBERNETS aims to develop a relevant understanding of the interactions between information theory, game theory and signal processing to tackle two particular problems from both theoretical and practical perspectives: (I) use of feedback and (II) behavior adaptation in fully decentralized CCNs. In the former, the main objectives are: (i) to determine the fundamental limits of data transmission rates in CCNs with feedback; and (ii) to develop and test in real-systems, transmit-receive configurations to provide a proof-of-concept of feedback in CCNs. For the achievement of these practical objectives, CYBERNETS relies on the world-class testbed infrastructure of INRIA at the CITI Lab for fully closing the gap between theoretical analysis and real-system implementation. In the latter, the main objectives are: (i) to identify and explore alternatives for allowing transmitter-receiver pairs to learn equilibrium strategies in CCNs with and without feedback; (ii) to study the impact of network-state knowledge on scenarios derived from the malicious behavior of network components.

Status

CLOSED

Call topic

MSCA-IF-2014-EF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)