KnowGraphs | Knowledge Graphs at Scale

Summary
Knowledge graphs (KGs) are a flexible knowledge representation paradigm intended to allow knowledge to be consumed by humans and machines. Hence, they are regarded as a key enabler for a number of technologies including question answering, personal assistants and artificial intelligence across all sectors including Industry 4.0, personalized medicine, legislation, economics and more. While different implementations of the KG paradigm are now used by several large companies (incl. Microsoft, Google, Facebook, Amazon, Samsung, Ebay and IBM) as a key component of their data products, their use is currently unattainable for the majority of companies and private users. Custom formal representation mechanisms, organisation-specific storage solutions and query languages as well as large dedicated maintenance teams (often 100+ people per graph) are only some of the current challenges faced by organizations aiming to manage KGs at scale. Developing and maintaining a company-specific infrastructure to represent, construct and maintain KGs is only viable for large organisations able to afford the corresponding costs. In addition, a plethora of open questions pertaining to the transfer, applicability and integration of legal rights of knowledge graphs remain completely unsolved. The overall objective of KnowGraphs (summarized in Figure 1.1) is to scale knowledge graphs to be accessible to a wide audience of (1) companies of all sizes and (2) end users across their professional and private life by using a multi-disciplinary and multi-sectorial approach.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/860801
Start date: 01-10-2019
End date: 31-03-2024
Total budget - Public funding: 3 873 641,40 Euro - 3 873 641,00 Euro
Cordis data

Original description

Knowledge graphs (KGs) are a flexible knowledge representation paradigm intended to allow knowledge to be consumed by humans and machines. Hence, they are regarded as a key enabler for a number of technologies including question answering, personal assistants and artificial intelligence across all sectors including Industry 4.0, personalized medicine, legislation, economics and more. While different implementations of the KG paradigm are now used by several large companies (incl. Microsoft, Google, Facebook, Amazon, Samsung, Ebay and IBM) as a key component of their data products, their use is currently unattainable for the majority of companies and private users. Custom formal representation mechanisms, organisation-specific storage solutions and query languages as well as large dedicated maintenance teams (often 100+ people per graph) are only some of the current challenges faced by organizations aiming to manage KGs at scale. Developing and maintaining a company-specific infrastructure to represent, construct and maintain KGs is only viable for large organisations able to afford the corresponding costs. In addition, a plethora of open questions pertaining to the transfer, applicability and integration of legal rights of knowledge graphs remain completely unsolved. The overall objective of KnowGraphs (summarized in Figure 1.1) is to scale knowledge graphs to be accessible to a wide audience of (1) companies of all sizes and (2) end users across their professional and private life by using a multi-disciplinary and multi-sectorial approach.

Status

SIGNED

Call topic

MSCA-ITN-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.1. Fostering new skills by means of excellent initial training of researchers
H2020-MSCA-ITN-2019
MSCA-ITN-2019