MarmOT | The role of oxytocin in vocal communication and brain-to-brain synchrony of socially interacting marmosets

Summary
Primates interact with each other primarily through visual and acoustic communication. However, while primate social vision has been extensively studied, little is known about the neuronal basis of acoustic communication in primates. More specifically, we ignore how oxytocin, a neurohormone that regulates social behavior in mammals and a promising therapeutic target for psychiatric disorders, modulates acoustic communication. Based on preliminary evidence, I hypothesize that oxytocin (1) acts in the auditory cortex to increase signal to noise ratio in response to social auditory stimuli, (2) is required for normal communication behavior and (3) is critical to brain-to-brain coordination between two interacting individuals. This Global Fellowship proposal has been designed to unveil how oxytocin influences primates’ acoustic communication at the neuronal and behavioral levels. To do so, I will combine state of the art techniques, such as chemogenetic manipulation of oxytocin neurons and wireless electrophysiology, in marmoset monkeys. This highly vocal primate is key to this project and a rapidly growing animal model in neuroscience. I will learn to work with them during my Outgoing phase in San Diego (USA) and transfer this knowledge back to Europe during the incoming phase, by participating in the inception of a marmoset laboratory in Lyon (France). This project will greatly enhance my career opportunities in academia as it will give me a unique theoretical and technical background. It will place me in a good spot to explore innovative research pathways, with a great potential scientific impact. All the outcomes from MarmOT will be published strictly following the Open Science objective of H2020. Finally, I propose innovative ways to disseminate the results of my experiments in order to reach all types of audience, by collaborating with a local Zoo or contacting Youtubers.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101018877
Start date: 01-01-2022
End date: 31-01-2025
Total budget - Public funding: 257 619,84 Euro - 257 619,00 Euro
Cordis data

Original description

Primates interact with each other primarily through visual and acoustic communication. However, while primate social vision has been extensively studied, little is known about the neuronal basis of acoustic communication in primates. More specifically, we ignore how oxytocin, a neurohormone that regulates social behavior in mammals and a promising therapeutic target for psychiatric disorders, modulates acoustic communication. Based on preliminary evidence, I hypothesize that oxytocin (1) acts in the auditory cortex to increase signal to noise ratio in response to social auditory stimuli, (2) is required for normal communication behavior and (3) is critical to brain-to-brain coordination between two interacting individuals. This Global Fellowship proposal has been designed to unveil how oxytocin influences primates’ acoustic communication at the neuronal and behavioral levels. To do so, I will combine state of the art techniques, such as chemogenetic manipulation of oxytocin neurons and wireless electrophysiology, in marmoset monkeys. This highly vocal primate is key to this project and a rapidly growing animal model in neuroscience. I will learn to work with them during my Outgoing phase in San Diego (USA) and transfer this knowledge back to Europe during the incoming phase, by participating in the inception of a marmoset laboratory in Lyon (France). This project will greatly enhance my career opportunities in academia as it will give me a unique theoretical and technical background. It will place me in a good spot to explore innovative research pathways, with a great potential scientific impact. All the outcomes from MarmOT will be published strictly following the Open Science objective of H2020. Finally, I propose innovative ways to disseminate the results of my experiments in order to reach all types of audience, by collaborating with a local Zoo or contacting Youtubers.

Status

SIGNED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships