Summary
"Indoor air quality (IAQ) is an important public health concern since most people spend 80-90 % of their time indoors. The coronavirus pandemic has increased the public awareness of the effects of poor IAQ. In enclosed indoor spaces fresh air supply can be very low or null and CO2 levels can reach health-threatening levels. Therefore, there is an increasing need to develop technologies to mitigate atmospheric CO2 and improve IAQ, but also technologies capable of transforming it into value-added products such as carbon-neutral commodity chemicals. The MICRO-BIO process is proposed as a comprehensive platform to capture CO2 from indoor air, transform it into valuable carbon-neutral commodity chemicals by developing a multi-unit, modular, and scalable platform process. The MICRO-BIO process is composed by three different modules: 1st a CO2 micro-concentrator module (CO2-MCM) to efficiently adsorb CO2 from indoor air. 2nd, the Microbial Electrochemical Synthesis Module where the H2 bioelectrochemically produced is mixed with CO2 from the CO2-MCM to produce short chain commodity chemicals. And 3rd, the Microbioreactor Module where the carbon-chain elongation process is performed in a capillary microbioreactor to produce hexanol, a sustainable liquid biofuel with high market demand. Objectives of the proposal: 1) Design and operation of a CO2-MCM prototype to efficiently adsorb CO2 from indoor air. 2) Development of a real-control system for steering gas bio-electro-fermentation towards selective production of hexanol. 3) Set-up a MICRO-BIO process prototype to demonstrate the optimized operation for hexanol production. This fellowship will contribute to addressing the actions included in the Green deal roadmap of the EU, by investing in environmentally friendly technologies and decarbonizing the energy section. Also shares the target of UN Sustainable Development goal titled ""Affordable and clean energy”: to facilitate access to clean energy research and technology."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101018274 |
Start date: | 01-02-2022 |
End date: | 31-01-2024 |
Total budget - Public funding: | 160 932,48 Euro - 160 932,00 Euro |
Cordis data
Original description
"Indoor air quality (IAQ) is an important public health concern since most people spend 80-90 % of their time indoors. The coronavirus pandemic has increased the public awareness of the effects of poor IAQ. In enclosed indoor spaces fresh air supply can be very low or null and CO2 levels can reach health-threatening levels. Therefore, there is an increasing need to develop technologies to mitigate atmospheric CO2 and improve IAQ, but also technologies capable of transforming it into value-added products such as carbon-neutral commodity chemicals. The MICRO-BIO process is proposed as a comprehensive platform to capture CO2 from indoor air, transform it into valuable carbon-neutral commodity chemicals by developing a multi-unit, modular, and scalable platform process. The MICRO-BIO process is composed by three different modules: 1st a CO2 micro-concentrator module (CO2-MCM) to efficiently adsorb CO2 from indoor air. 2nd, the Microbial Electrochemical Synthesis Module where the H2 bioelectrochemically produced is mixed with CO2 from the CO2-MCM to produce short chain commodity chemicals. And 3rd, the Microbioreactor Module where the carbon-chain elongation process is performed in a capillary microbioreactor to produce hexanol, a sustainable liquid biofuel with high market demand. Objectives of the proposal: 1) Design and operation of a CO2-MCM prototype to efficiently adsorb CO2 from indoor air. 2) Development of a real-control system for steering gas bio-electro-fermentation towards selective production of hexanol. 3) Set-up a MICRO-BIO process prototype to demonstrate the optimized operation for hexanol production. This fellowship will contribute to addressing the actions included in the Green deal roadmap of the EU, by investing in environmentally friendly technologies and decarbonizing the energy section. Also shares the target of UN Sustainable Development goal titled ""Affordable and clean energy”: to facilitate access to clean energy research and technology."Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping