MAT4COVID | Interaction of SARS-CoV-2 virus with materials: a multi computational simulation study.

Summary
This project proposes an atomistic modelling approach to the fundamental question of the interaction of enveloped viruses (in particular the SARS-CoV-2 virus responsible for the Covid-19 disease), with surfaces of materials. These interactions play a key role in indirect disease transmission through surfaces of materials contaminated with virus. This is particularly relevant in the case of the ongoing Covid-19 global pandemic; being the control of the disease transmission a priority everywhere. SARS-CoV-2 virus transmission mediated by contaminated surfaces has been identified in particular outbreaks, and the cleaning and disinfection of surfaces is known to be a major issue. Development of more efficient disinfestation strategies to break the transmission chain or the development of virucidal materials will be possible with a fundamental knowledge of the interaction of the virus with materials. The methodology to be employed will be atomistic simulations, based on the pre-existent deep understanding of the molecular structure of the virus. It should be noted that there is a substantial activity worldwide on atomistic simulations of the interactions between the virus components and possible antiviral drugs. However, the fundamental question of the interaction of the virus with materials remains largely unstudied. The main vision of this research project is to use state-of-the-art computational chemistry tools (MD simulation and QM/MM), to predict the interaction between the molecular elements of the SARS-CoV-2 virus envelope and surfaces of materials. We will consider various materials of interest and different thermodynamic conditions. The results of the present project not only will pave the way to identify the factors that influence the adhesion of SARS-CoV-2 virus to surfaces and to investigate the possible virucidal action of materials but also, will shed the lights to study the interaction of the other enveloped viruses like Influenza virus with materials.
Results, demos, etc. Show all and search (0)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026158
Start date: 01-10-2021
End date: 30-09-2023
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

This project proposes an atomistic modelling approach to the fundamental question of the interaction of enveloped viruses (in particular the SARS-CoV-2 virus responsible for the Covid-19 disease), with surfaces of materials. These interactions play a key role in indirect disease transmission through surfaces of materials contaminated with virus. This is particularly relevant in the case of the ongoing Covid-19 global pandemic; being the control of the disease transmission a priority everywhere. SARS-CoV-2 virus transmission mediated by contaminated surfaces has been identified in particular outbreaks, and the cleaning and disinfection of surfaces is known to be a major issue. Development of more efficient disinfestation strategies to break the transmission chain or the development of virucidal materials will be possible with a fundamental knowledge of the interaction of the virus with materials. The methodology to be employed will be atomistic simulations, based on the pre-existent deep understanding of the molecular structure of the virus. It should be noted that there is a substantial activity worldwide on atomistic simulations of the interactions between the virus components and possible antiviral drugs. However, the fundamental question of the interaction of the virus with materials remains largely unstudied. The main vision of this research project is to use state-of-the-art computational chemistry tools (MD simulation and QM/MM), to predict the interaction between the molecular elements of the SARS-CoV-2 virus envelope and surfaces of materials. We will consider various materials of interest and different thermodynamic conditions. The results of the present project not only will pave the way to identify the factors that influence the adhesion of SARS-CoV-2 virus to surfaces and to investigate the possible virucidal action of materials but also, will shed the lights to study the interaction of the other enveloped viruses like Influenza virus with materials.

Status

TERMINATED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)