DIGDEEP | Digging deeper into genes to track infectious disease outbreaks

Summary
Successful public and animal health interventions require detailed knowledge of infectious disease transmission dynamics, in particular how they spread within and between populations. Recent advances in phylodynamics have largely contributed towards the understanding of epidemic spread, including Ebola, HIV and MERS-CoV, by integrating epidemiological and genetic data. Since the beginning of the 21st century, the emergence of new avian influenza viruses (AIV) with high pandemic potential have underlined the need for established global mechanisms to respond to public and animal health threats. To this end, DIGDEEP aims at developing alternative control strategies tailored to the characteristics of AIV evolution and transmission in order to minimize the global economic and health impact of the epidemics. The project will use cutting-edge phylodynamic inference methods to explore devastating and unprecedented epidemics of AIV in Europe and Asia. The outcomes of the project will allow us to infer key epidemiological parameters of the virus spread, such as the basic reproduction number or the likelihood of spillover between host species, and characterize the determinants of the epidemics, such as the importance of population structure or super-spreaders. DIGDEEP will also help to assess the effectiveness of public and animal health interventions in bringing the epidemic under control which are crucial for a well-informed response. Throughout the project, the fellow will gain a strong experience in phylodynamic inference methods, complementing her experience in epidemiology of infectious disease transmission. DIGDEEP will consolidate her scientific expertise in the field of public and animal health and develop transferable skills in team-working, communication and project management, which will be paramount to boost her career as a successful and internationally-recognized researcher.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/842621
Start date: 01-09-2020
End date: 31-08-2022
Total budget - Public funding: 203 149,44 Euro - 203 149,00 Euro
Cordis data

Original description

Successful public and animal health interventions require detailed knowledge of infectious disease transmission dynamics, in particular how they spread within and between populations. Recent advances in phylodynamics have largely contributed towards the understanding of epidemic spread, including Ebola, HIV and MERS-CoV, by integrating epidemiological and genetic data. Since the beginning of the 21st century, the emergence of new avian influenza viruses (AIV) with high pandemic potential have underlined the need for established global mechanisms to respond to public and animal health threats. To this end, DIGDEEP aims at developing alternative control strategies tailored to the characteristics of AIV evolution and transmission in order to minimize the global economic and health impact of the epidemics. The project will use cutting-edge phylodynamic inference methods to explore devastating and unprecedented epidemics of AIV in Europe and Asia. The outcomes of the project will allow us to infer key epidemiological parameters of the virus spread, such as the basic reproduction number or the likelihood of spillover between host species, and characterize the determinants of the epidemics, such as the importance of population structure or super-spreaders. DIGDEEP will also help to assess the effectiveness of public and animal health interventions in bringing the epidemic under control which are crucial for a well-informed response. Throughout the project, the fellow will gain a strong experience in phylodynamic inference methods, complementing her experience in epidemiology of infectious disease transmission. DIGDEEP will consolidate her scientific expertise in the field of public and animal health and develop transferable skills in team-working, communication and project management, which will be paramount to boost her career as a successful and internationally-recognized researcher.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2018
MSCA-IF-2018