OCNANO | Depicting the richest source of pathogen linked miscellaneous gene expression in orphan crops by Nanopore.

Summary
Modern agriculture is dominated by crops noticeable for intense food supply leaving behind a class of neglected or orphan crops. Relatively poorly studied orphan crops have the potential to diversify the human diet, increase agricultural food productivity levels and enable more sustainable and resilient agro- and horti-food systems. Here, we focus on two such crops-Piper nigrum (black pepper) the most important spice traded internationally and Piper colubrinum, a wild relative of black pepper introduced from Brazil, which is the only known source of resistance to diseases such as foot rot or quick wilt caused by an Oomycete Phytophthora capsici. Negligible genome sequence data exists for either species. Although agricultural practices for making P. nigrum resistant to this Oomycete by interspecific hybridization with P.colubrinum are well known, no effective strategies have been generated yet. The exact reason behind the resistance of P.colubrinum is not yet understood, thus leaving open a fertile area of investigation.With this background, OCNANO aims to reveal the basis of pathogen resistance that distinguish resistant from susceptible species of Piper. We will employ Oxford nanopore MinION technology to address this issue with three specific objectives:(1) Annotate the transcriptomes of P.nigrum and P. colubrinum; (2) Identify pathogen gene expression during infection using a capture array; (3) Comparative analysis of P. nigrum and P. colubrinum gene expression during infection. Innovative strategies like nanopore in combination with other sequencing approaches can transform annotation and enable the richest understanding of gene expression during pathogen attack. Research progressing towards the rescue of such orphan crops from their environmental stresses, by applying leading edge technologies, can further enhance crop productivity, food security, knowledge based economy and society and contribute to the achievement of several UN Sustainable Development Goals.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/896598
Start date: 01-12-2020
End date: 07-09-2023
Total budget - Public funding: 224 933,76 Euro - 224 933,00 Euro
Cordis data

Original description

Modern agriculture is dominated by crops noticeable for intense food supply leaving behind a class of neglected or orphan crops. Relatively poorly studied orphan crops have the potential to diversify the human diet, increase agricultural food productivity levels and enable more sustainable and resilient agro- and horti-food systems. Here, we focus on two such crops-Piper nigrum (black pepper) the most important spice traded internationally and Piper colubrinum, a wild relative of black pepper introduced from Brazil, which is the only known source of resistance to diseases such as foot rot or quick wilt caused by an Oomycete Phytophthora capsici. Negligible genome sequence data exists for either species. Although agricultural practices for making P. nigrum resistant to this Oomycete by interspecific hybridization with P.colubrinum are well known, no effective strategies have been generated yet. The exact reason behind the resistance of P.colubrinum is not yet understood, thus leaving open a fertile area of investigation.With this background, OCNANO aims to reveal the basis of pathogen resistance that distinguish resistant from susceptible species of Piper. We will employ Oxford nanopore MinION technology to address this issue with three specific objectives:(1) Annotate the transcriptomes of P.nigrum and P. colubrinum; (2) Identify pathogen gene expression during infection using a capture array; (3) Comparative analysis of P. nigrum and P. colubrinum gene expression during infection. Innovative strategies like nanopore in combination with other sequencing approaches can transform annotation and enable the richest understanding of gene expression during pathogen attack. Research progressing towards the rescue of such orphan crops from their environmental stresses, by applying leading edge technologies, can further enhance crop productivity, food security, knowledge based economy and society and contribute to the achievement of several UN Sustainable Development Goals.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019