T-REX | Developing healthy crops for EU: T3SS-Recognition EXploration (T-REX) for plant immunity against bacteria

Summary
Among the greatest challenges of the 21st century are bacterial diseases that permanently threat plants and animals, including humans to whom they often are lethal. In plant and animal production, bacteria can cause severe yield reductions if not effectively controlled. However, the current control measures include use of environmentally problematic antibiotics, which in addition may lead to appearance of bacterial strains resistant to these antibiotics.
Recent progress in the host laboratory using a Genome Wide Association Study (GWAS) of wheat reveals a hitherto unknown recognition mechanism of the effector translocator widely conserved in pathogenic bacteria. The associated receptor complex is predicted to have wide potential for exploitation in bacterial disease control, not only in crop plants but also in livestock production. In the T-REX project, number of parallel efforts will be taken to characterize the recognized T3SS component, the membrane bound receptor complex and the activated immunity. This will be undertaken using an integrated approach, which involves my background knowledge and experiences combined with the ones of the host institution within molecular genetics, biochemistry, molecular biology and bioinformatics.
This study will shed light on the role of T3SS as a PAMP, which will help us to elucidate the complex plant-bacterial interactions and can potentially lead to the development of new phyto-pathogen control strategies. T3SS being conserved among plant and animal pathogen, the outcome of the T-REX project has potential for extrapolation into animal pathological systems, including humans, and may contribute to the world of medicine.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/795806
Start date: 14-01-2019
End date: 13-01-2021
Total budget - Public funding: 200 194,80 Euro - 200 194,00 Euro
Cordis data

Original description

Among the greatest challenges of the 21st century are bacterial diseases that permanently threat plants and animals, including humans to whom they often are lethal. In plant and animal production, bacteria can cause severe yield reductions if not effectively controlled. However, the current control measures include use of environmentally problematic antibiotics, which in addition may lead to appearance of bacterial strains resistant to these antibiotics.
Recent progress in the host laboratory using a Genome Wide Association Study (GWAS) of wheat reveals a hitherto unknown recognition mechanism of the effector translocator widely conserved in pathogenic bacteria. The associated receptor complex is predicted to have wide potential for exploitation in bacterial disease control, not only in crop plants but also in livestock production. In the T-REX project, number of parallel efforts will be taken to characterize the recognized T3SS component, the membrane bound receptor complex and the activated immunity. This will be undertaken using an integrated approach, which involves my background knowledge and experiences combined with the ones of the host institution within molecular genetics, biochemistry, molecular biology and bioinformatics.
This study will shed light on the role of T3SS as a PAMP, which will help us to elucidate the complex plant-bacterial interactions and can potentially lead to the development of new phyto-pathogen control strategies. T3SS being conserved among plant and animal pathogen, the outcome of the T-REX project has potential for extrapolation into animal pathological systems, including humans, and may contribute to the world of medicine.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017