AROMAs-FLOW | Biocatalytic flow reactors using extremophilic enzymes for a greener generation of aroma-compounds

Summary
In tune with sustainable chemistry, the use of enzymes for synthetic purposes has indeed drawn much attention as it is seen as an eco-friendly process. From another perspective, flow reactor technology represents one of the new strategies introduced in last few years to advance sustainability of organic synthesis and shows many advantages compared with traditional batch methods, including improved heat and mass transfer, efficient mixing of substrates and shorter reactions time. AROMAs-FLOW innovative strategy involves a combination of flow reactor technology and biocatalysis to create an efficient and modern platform oriented to a green production of natural food compounds and capable of extraordinary versatility and reaction innovation. The excellent opportunities offered by using immobilized biocatalysts under flow reaction conditions, represent a research field of certain growth. Twenty target aroma-compounds, three types of enzymes as well as acetic acid bacteria as whole cells have been selected to focus the efforts on specific synthetic problems, and to efficiently implement knowledge transfer to practical applications. The innovative AROMAs-FLOW project will offer an attractive economical incentive to the food industry because of consumers’ preference for natural products, attributed to increasing health- and nutrition-conscious lifestyles, as well as an alternative to traditional agriculture at risk of possible shortages caused by local condition production (climate, pesticides etc.) and the responsible care of natural resources. Furthermore, alternative “natural” routes for flavours production in addition to plants extraction, are becoming increasingly appealing. In agreement with Europe 2020 strategy, the outcomes of my research will reduce the cost of energy consumption and chemical waste with a significant economic and environmental impact on the society.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/792804
Start date: 01-04-2018
End date: 31-03-2020
Total budget - Public funding: 183 454,80 Euro - 183 454,00 Euro
Cordis data

Original description

In tune with sustainable chemistry, the use of enzymes for synthetic purposes has indeed drawn much attention as it is seen as an eco-friendly process. From another perspective, flow reactor technology represents one of the new strategies introduced in last few years to advance sustainability of organic synthesis and shows many advantages compared with traditional batch methods, including improved heat and mass transfer, efficient mixing of substrates and shorter reactions time. AROMAs-FLOW innovative strategy involves a combination of flow reactor technology and biocatalysis to create an efficient and modern platform oriented to a green production of natural food compounds and capable of extraordinary versatility and reaction innovation. The excellent opportunities offered by using immobilized biocatalysts under flow reaction conditions, represent a research field of certain growth. Twenty target aroma-compounds, three types of enzymes as well as acetic acid bacteria as whole cells have been selected to focus the efforts on specific synthetic problems, and to efficiently implement knowledge transfer to practical applications. The innovative AROMAs-FLOW project will offer an attractive economical incentive to the food industry because of consumers’ preference for natural products, attributed to increasing health- and nutrition-conscious lifestyles, as well as an alternative to traditional agriculture at risk of possible shortages caused by local condition production (climate, pesticides etc.) and the responsible care of natural resources. Furthermore, alternative “natural” routes for flavours production in addition to plants extraction, are becoming increasingly appealing. In agreement with Europe 2020 strategy, the outcomes of my research will reduce the cost of energy consumption and chemical waste with a significant economic and environmental impact on the society.

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017