BIOFERTICELLULASER | Role of bacterial cellulases in the transition from free living to root endophytes in rapeseed crops and in the design of efficient biofertilizers

Summary
One of the main challenges for humanity during next decades will be to increase food production while using scarce resources and protecting the environment, being therefore one of the priorities of the European Program “Horizon 2020”. Plant’s productivity can be enhanced by the activity of Plant Growth-Promoting (PGP) bacteria, applied in agricultural fields as biofertilizers or plant probiotics, constituting an environmental friendly manner to increase crop yields. Biofertilizers have been applied in agriculture during decades, but in many cases bacteria which showed great PGP potential in lab conditions, fail when applied in natural soils, probably because they are out-competed by the soil native microbial populations or they are unable to adapt to the new environmental conditions.
Based on the model Rhizobium-clover, it is known that bacterial cellulases are crucial in the bacterial entrance into the root. Nevertheless, the implication of these enzymes in the active entrance of bacterial endophytes in non-legume crops has not been studied yet. This project aims to research, using a trascriptomic approach and endophytes mutant strains isolation, the role of cellulases in the capability of endophytes to enter non-legume plant roots, using rapeseed (B. napus) as model plant. If cellulase encoding genes enable active root infection, giving an advantage over passive mechanisms, selection of bacterial strains not only on the base of their PGP capacity, but also on their ability to enter the plant -where they have less competitors and are protected from abiotic stresses-, will allow the design of more efficient bacterial biofertilizers. The ultimate goal of this project is to lay the firm foundations for the development of biological microbial-based fertilizers which shall allow the reduction or even suppression of chemical fertilizers (dangerous for human health and environment and contributing to the climate change) while maintaining or increasing crops production.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/750795
Start date: 01-06-2017
End date: 31-05-2019
Total budget - Public funding: 170 121,60 Euro - 170 121,00 Euro
Cordis data

Original description

One of the main challenges for humanity during next decades will be to increase food production while using scarce resources and protecting the environment, being therefore one of the priorities of the European Program “Horizon 2020”. Plant’s productivity can be enhanced by the activity of Plant Growth-Promoting (PGP) bacteria, applied in agricultural fields as biofertilizers or plant probiotics, constituting an environmental friendly manner to increase crop yields. Biofertilizers have been applied in agriculture during decades, but in many cases bacteria which showed great PGP potential in lab conditions, fail when applied in natural soils, probably because they are out-competed by the soil native microbial populations or they are unable to adapt to the new environmental conditions.
Based on the model Rhizobium-clover, it is known that bacterial cellulases are crucial in the bacterial entrance into the root. Nevertheless, the implication of these enzymes in the active entrance of bacterial endophytes in non-legume crops has not been studied yet. This project aims to research, using a trascriptomic approach and endophytes mutant strains isolation, the role of cellulases in the capability of endophytes to enter non-legume plant roots, using rapeseed (B. napus) as model plant. If cellulase encoding genes enable active root infection, giving an advantage over passive mechanisms, selection of bacterial strains not only on the base of their PGP capacity, but also on their ability to enter the plant -where they have less competitors and are protected from abiotic stresses-, will allow the design of more efficient bacterial biofertilizers. The ultimate goal of this project is to lay the firm foundations for the development of biological microbial-based fertilizers which shall allow the reduction or even suppression of chemical fertilizers (dangerous for human health and environment and contributing to the climate change) while maintaining or increasing crops production.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016