PDgate | Plasmodesmata: gatekeepers for cell-to-cell viral spread in plants

Summary
Viruses cause epidemics on all major crops of agronomic importance, representing a serious threat to agriculture and global food security. Among plant viruses, those induced by RNA are of particular concern due to their overrepresentation and the lack of effective countermeasures. As obligate intracellular parasites, their control still relies on an excessive application of pesticides against virus vectors and preventive actions consisting mainly in the detection and removal of infected plants. Virus‐resistant crop varieties are a powerful alternative but often confined to narrow germplasm base and takes long periods to introgress the resistance trait. One of the most effective and sustainable ways to avoid virus infection is to use genome editing to expand genetic tools. Therefore, plant virologists are turning their interests toward host factors that play essential roles in infection as novel antiviral targets. Cell-to-cell movement is critical for virus spread, and thus an ideal point for creating resistance. Plant viruses can exploit plasmodesmata (PD) -channels that interconnect every single plant cell- using encoded so-called movement proteins (MPs) which mediate the transport of the viral genomes cell-to-cell. Understanding the intercellular transport of viruses and the components involved offer breeding targets for genome editing to control virus spread and, thus block viral infection. Therefore, we propose here to identity comprehensively the compendium of MP-interacting proteins using high-end proteomics. Additionally, we will apply the state-of-the-art technology genome editing and advanced microscopy to define the role of MP-interacting proteins during virus transport and infection, laying the basis for novel biotech solutions in agriculture.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101023981
Start date: 01-05-2021
End date: 30-04-2023
Total budget - Public funding: 174 806,40 Euro - 174 806,00 Euro
Cordis data

Original description

Viruses cause epidemics on all major crops of agronomic importance, representing a serious threat to agriculture and global food security. Among plant viruses, those induced by RNA are of particular concern due to their overrepresentation and the lack of effective countermeasures. As obligate intracellular parasites, their control still relies on an excessive application of pesticides against virus vectors and preventive actions consisting mainly in the detection and removal of infected plants. Virus‐resistant crop varieties are a powerful alternative but often confined to narrow germplasm base and takes long periods to introgress the resistance trait. One of the most effective and sustainable ways to avoid virus infection is to use genome editing to expand genetic tools. Therefore, plant virologists are turning their interests toward host factors that play essential roles in infection as novel antiviral targets. Cell-to-cell movement is critical for virus spread, and thus an ideal point for creating resistance. Plant viruses can exploit plasmodesmata (PD) -channels that interconnect every single plant cell- using encoded so-called movement proteins (MPs) which mediate the transport of the viral genomes cell-to-cell. Understanding the intercellular transport of viruses and the components involved offer breeding targets for genome editing to control virus spread and, thus block viral infection. Therefore, we propose here to identity comprehensively the compendium of MP-interacting proteins using high-end proteomics. Additionally, we will apply the state-of-the-art technology genome editing and advanced microscopy to define the role of MP-interacting proteins during virus transport and infection, laying the basis for novel biotech solutions in agriculture.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships