Crystal Solar | Organic-Inorganic perovskite and organic semiconductor films with improved crystal properties via reel-to-reel solution coating; application to photovoltaics and field effect transistors

Summary
This project will develop low cost and scalable solution–based coating techniques to yield electrically tunable films with macroscopic crystalline domains of both organic–inorganic perovskite and organic semiconductors. These layers will be used to prepare solution processed hybrid perovskite-based photovoltaic (PV) devices surpassing 20 % solar-to-electricity power conversion efficiency, to provide a low cost and renewable energy supply. The researcher will carry out the processing and characterization of the materials at Professor Zhenan Bao's laboratory at Stanford University. Professor Bao is a world leader in using solution deposition techniques to tune the physical and electronic properties of solution-processed semiconductors for use in FETs, and is well suited to extend this approach to perovskite PV. The skills and knowledge obtained at Stanford University will be brought back to Professor Henry Snaith's laboratory at Oxford University and to Oxford Photovoltaics ltd to prepare low cost, scalable perovskite PV with enhanced macroscopic crystal properties and performance. Professor Snaith is recognized as one of the pioneers in perovskite based PV, and is thus excellently placed to guide the researcher in the development of PV with superior performance for eventual employment as large-scale energy supply. This project will form a unique union of two world leading research groups with complementary expertise. There is great potential for the transfer of skills, generation of intellectual property, and industrial involvement within the EU via the ISIS program at Oxford University, and the company Oxford Photovoltaics of which Professor Snaith is the CTO.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/659225
Start date: 01-01-2016
End date: 31-12-2018
Total budget - Public funding: 251 857,80 Euro - 251 857,00 Euro
Cordis data

Original description

This project will develop low cost and scalable solution–based coating techniques to yield electrically tunable films with macroscopic crystalline domains of both organic–inorganic perovskite and organic semiconductors. These layers will be used to prepare solution processed hybrid perovskite-based photovoltaic (PV) devices surpassing 20 % solar-to-electricity power conversion efficiency, to provide a low cost and renewable energy supply. The researcher will carry out the processing and characterization of the materials at Professor Zhenan Bao's laboratory at Stanford University. Professor Bao is a world leader in using solution deposition techniques to tune the physical and electronic properties of solution-processed semiconductors for use in FETs, and is well suited to extend this approach to perovskite PV. The skills and knowledge obtained at Stanford University will be brought back to Professor Henry Snaith's laboratory at Oxford University and to Oxford Photovoltaics ltd to prepare low cost, scalable perovskite PV with enhanced macroscopic crystal properties and performance. Professor Snaith is recognized as one of the pioneers in perovskite based PV, and is thus excellently placed to guide the researcher in the development of PV with superior performance for eventual employment as large-scale energy supply. This project will form a unique union of two world leading research groups with complementary expertise. There is great potential for the transfer of skills, generation of intellectual property, and industrial involvement within the EU via the ISIS program at Oxford University, and the company Oxford Photovoltaics of which Professor Snaith is the CTO.

Status

CLOSED

Call topic

MSCA-IF-2014-GF

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2014
MSCA-IF-2014-GF Marie Skłodowska-Curie Individual Fellowships (IF-GF)