Smart Colour | Remotely Adjustable Structural Plasmonic Colour

Summary
In the Smart Colour project, I aim to develop the first remotely adjustable plasmonic structural colour surface, where the colour appearance can be changed reversibly by photo-thermal actuation. I will achieve this by applying a combination of plasmonic nanostructures and phase changeable materials. Smart plasmonic colouration can be used in rewritable optical data recording systems, display devices and consumer goods in general where the consumer will be able to change the colour of a given product according to his/her will. For centuries, pigments have been the main colorant agents. However, pigments are environmentally hazardous, rarely recyclable and instable due to photobleaching. Plasmonic structural colours are instead robust and sustainable. Despite enormous efforts in this evolving field, development of tunable structural colouring, similar to camouflaging in animals, remains a challenge. I will address this challenge by exploiting the heat generated in plasmonic materials under resonant absorption of light – external stimuli - to actuate phase changeable materials, such as tungsten doped Vanadium dioxide (VO2-W). The heat can transform VO2-W from a semiconductor to a metallic state and shift the plasmon resonance of the nanostructures. The resulting resonance-shift changes the appearance (colour) of the surface. The realization of this ambitious project will increase the European competence in nano-optics and pave the way for new applications of plasmonic materials. The multidisciplinary nature of the project, involving physics, materials science and engineering gives me a great opportunity to learn new skills such as optical simulation, nano-photonics and hands-on-experience in electron beam lithography and nano-structuring. Moreover, it will be a great chance for me to practice management of a research project. Therefore, it will leverage my capabilities and skills to establish my own leading independent research group following this fellowship.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/701597
Start date: 01-07-2016
End date: 30-06-2018
Total budget - Public funding: 212 194,80 Euro - 212 194,00 Euro
Cordis data

Original description

In the Smart Colour project, I aim to develop the first remotely adjustable plasmonic structural colour surface, where the colour appearance can be changed reversibly by photo-thermal actuation. I will achieve this by applying a combination of plasmonic nanostructures and phase changeable materials. Smart plasmonic colouration can be used in rewritable optical data recording systems, display devices and consumer goods in general where the consumer will be able to change the colour of a given product according to his/her will. For centuries, pigments have been the main colorant agents. However, pigments are environmentally hazardous, rarely recyclable and instable due to photobleaching. Plasmonic structural colours are instead robust and sustainable. Despite enormous efforts in this evolving field, development of tunable structural colouring, similar to camouflaging in animals, remains a challenge. I will address this challenge by exploiting the heat generated in plasmonic materials under resonant absorption of light – external stimuli - to actuate phase changeable materials, such as tungsten doped Vanadium dioxide (VO2-W). The heat can transform VO2-W from a semiconductor to a metallic state and shift the plasmon resonance of the nanostructures. The resulting resonance-shift changes the appearance (colour) of the surface. The realization of this ambitious project will increase the European competence in nano-optics and pave the way for new applications of plasmonic materials. The multidisciplinary nature of the project, involving physics, materials science and engineering gives me a great opportunity to learn new skills such as optical simulation, nano-photonics and hands-on-experience in electron beam lithography and nano-structuring. Moreover, it will be a great chance for me to practice management of a research project. Therefore, it will leverage my capabilities and skills to establish my own leading independent research group following this fellowship.

Status

CLOSED

Call topic

MSCA-IF-2015-EF

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2015
MSCA-IF-2015-EF Marie Skłodowska-Curie Individual Fellowships (IF-EF)