HIERARCHICAL FUNCOAT | Hierarchical Surface Protection, A New Paradigm Toward Functional Multi-Nano-Layered Coatings

Summary
"It is estimated that nearly two-thirds of the entire coating materials suffer from wear and demand annual substitution. Even a modest few percent reduction in coating failures can significantly impact energy security, energy savings, and environmental benefits. Single-layer coatings fail to sufficiently protect components surface under harsh conditions. Recent progress in the field of “Materials-by-Design” open entirely new possibilities to “hierarchically” protect surfaces by designing functionally-gradient multi-layer coatings. ”. Multi-layer coatings have been a key advancement in extending the lifetime of the wear-resistant coatings for different applications. However, progress toward this scientific resolution has been slowly progressing on an empirical basis. Theoretical understanding and design principles for optimizing the performance of multi-layer coatings are very limited. This proposal aims to take a leap forward to understand and predict material removal mechanisms in multi-layer coatings using a complementary set of computer simulations and validating experiments. Specifically, the research seeks to hierarchically protect material surfaces by tailoring and optimizing the material gradient and layer architecture in a multi-layer coating setup. The main objectives of this research are summarized in three key headings; First, is to shed light on the fundamental understanding of the materials removal mechanisms of Functional Multi-layer Coatings (FMCs) across scales using complementary computer simulations and experiments. This theoretical understanding does not exit today and will be pioneered as the final goal of this proposal. Second, is to establish ""design principles"" for optimizing functionally-gradient and layer-architecture coatings for ultra-low wear and self-healing capacities. Last but not least, is to link and correlate the potential industries with the prospective results."
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/894551
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 219 312,00 Euro - 219 312,00 Euro
Cordis data

Original description

"It is estimated that nearly two-thirds of the entire coating materials suffer from wear and demand annual substitution. Even a modest few percent reduction in coating failures can significantly impact energy security, energy savings, and environmental benefits. Single-layer coatings fail to sufficiently protect components surface under harsh conditions. Recent progress in the field of “Materials-by-Design” open entirely new possibilities to “hierarchically” protect surfaces by designing functionally-gradient multi-layer coatings. ”. Multi-layer coatings have been a key advancement in extending the lifetime of the wear-resistant coatings for different applications. However, progress toward this scientific resolution has been slowly progressing on an empirical basis. Theoretical understanding and design principles for optimizing the performance of multi-layer coatings are very limited. This proposal aims to take a leap forward to understand and predict material removal mechanisms in multi-layer coatings using a complementary set of computer simulations and validating experiments. Specifically, the research seeks to hierarchically protect material surfaces by tailoring and optimizing the material gradient and layer architecture in a multi-layer coating setup. The main objectives of this research are summarized in three key headings; First, is to shed light on the fundamental understanding of the materials removal mechanisms of Functional Multi-layer Coatings (FMCs) across scales using complementary computer simulations and experiments. This theoretical understanding does not exit today and will be pioneered as the final goal of this proposal. Second, is to establish ""design principles"" for optimizing functionally-gradient and layer-architecture coatings for ultra-low wear and self-healing capacities. Last but not least, is to link and correlate the potential industries with the prospective results."

Status

SIGNED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019