perovskites-NMR | Atomic-level characterization of multi-component perovskite materials for optoelectronic applications

Summary
This project proposes to study the molecular structure of timely photovoltaic materials: 2D, quasi-3D, hollow 3D perovskites and 3D perovskites doped with organic molecular modifiers. The understanding of order, disorder and dynamics in these complex systems is the first and most important step towards more rational design of new stable perovskites for solar cell applications. The project will address this problem by employing multi-nuclear solid-state NMR and the protocols that have been recently developed to study multi-component perovskites by the applicant. 1H, 2H, 13C, 15N, 14N, 133Cs, 115In, 209Bi and 109Ag solid-state MAS NMR will be applied to study structure and dynamics of lead (2D, quasi-3D, hollow 3D), tin (hollow 3D) halide perovskites, silver-indium and silver-bismuth double perovskites and 3D lead halide perovskites doped with amino acid molecular modifiers. The structural details will be related back to the optoelectronic behaviour studied using techniques such as confocal time-resolved photoluminescence, electroluminescence, and PL quantum yield measurements when these materials are incorporated into thin film architectures. The results are expected to provide an unprecedented level of detail on the atomic-level organisation which will also be the first comprehensive description of the structure-optoelectronic activity relationship in these complex organic-inorganic materials. The developed protocols are expected to encourage the routine application of solid-state NMR to perovskite materials research. The impact of this research is expected to go well beyond the scientific community as there is currently considerable industrial interest in developing stable perovskite-based solar cells.
Results, demos, etc. Show all and search (6)
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/841136
Start date: 01-04-2019
End date: 31-03-2021
Total budget - Public funding: 212 933,76 Euro - 212 933,00 Euro
Cordis data

Original description

This project proposes to study the molecular structure of timely photovoltaic materials: 2D, quasi-3D, hollow 3D perovskites and 3D perovskites doped with organic molecular modifiers. The understanding of order, disorder and dynamics in these complex systems is the first and most important step towards more rational design of new stable perovskites for solar cell applications. The project will address this problem by employing multi-nuclear solid-state NMR and the protocols that have been recently developed to study multi-component perovskites by the applicant. 1H, 2H, 13C, 15N, 14N, 133Cs, 115In, 209Bi and 109Ag solid-state MAS NMR will be applied to study structure and dynamics of lead (2D, quasi-3D, hollow 3D), tin (hollow 3D) halide perovskites, silver-indium and silver-bismuth double perovskites and 3D lead halide perovskites doped with amino acid molecular modifiers. The structural details will be related back to the optoelectronic behaviour studied using techniques such as confocal time-resolved photoluminescence, electroluminescence, and PL quantum yield measurements when these materials are incorporated into thin film architectures. The results are expected to provide an unprecedented level of detail on the atomic-level organisation which will also be the first comprehensive description of the structure-optoelectronic activity relationship in these complex organic-inorganic materials. The developed protocols are expected to encourage the routine application of solid-state NMR to perovskite materials research. The impact of this research is expected to go well beyond the scientific community as there is currently considerable industrial interest in developing stable perovskite-based solar cells.

Status

CLOSED

Call topic

MSCA-IF-2018

Update Date

28-04-2024
Images
No images available.
Geographical location(s)