SUSNASOL | Designing of Environmentally Friendly Colloidal Nanocrystals for Sustainable Solar Cell Manufacturing

Summary
High-efficiency and low-cost solar cells are demanding to address the issue of the increasing global energy consumption and greenhouse gases emission. This stimulates the evolution of photovoltaic (PV) technologies from crystalline silicon (first generation) to thin film PV (second generation) with promises in further lowered cost and new building integrated applications (BIPV). However, facing problems of toxic and scarce materials (e.g. CdTe, CIGS, etc.) as well as the detrimental issue of defects (kesterite or CZTS) in the available solar cell technologies, SUSNASOL propose to build the new platform of low-temperature, high-throughput manufacturing for antisite-disorder suppressed, high-efficiency Ag2ZnSn(S,Se)4 or (Cu,Ag)2ZnSn(S,Se)4 (CAZTS) nanocrystal (NC) solar cells. By referring to many scientific breakthroughs in the field of thin film and colloidal NCs photovoltaics in recent years, and combining the extensive expertise in colloidal NC PVs of the hosting group with the developed material processing skills spanning chemistry, physics, and engineering of the experienced research (ER), this project aims at specific research objectives including designing environment-friendly, CRM-free nanomaterials with excellent optoelectronic properties; exploiting nanoscale tenability via colloidal chemistry to passivate this new class of NC materials; applying only mild sintering, and optimizing new device architecture (e.g. superstrate p-i-n, bulk nano-heterojunctions,etc.) to unlock the full potential of CAZTS NCs. This fellowship will be carried out at ICFO – The Institute of Photonic Sciences in Spain, supervised by Prof. Gerasimos Konstantatos.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/886953
Start date: 01-07-2020
End date: 30-06-2022
Total budget - Public funding: 172 932,48 Euro - 172 932,00 Euro
Cordis data

Original description

High-efficiency and low-cost solar cells are demanding to address the issue of the increasing global energy consumption and greenhouse gases emission. This stimulates the evolution of photovoltaic (PV) technologies from crystalline silicon (first generation) to thin film PV (second generation) with promises in further lowered cost and new building integrated applications (BIPV). However, facing problems of toxic and scarce materials (e.g. CdTe, CIGS, etc.) as well as the detrimental issue of defects (kesterite or CZTS) in the available solar cell technologies, SUSNASOL propose to build the new platform of low-temperature, high-throughput manufacturing for antisite-disorder suppressed, high-efficiency Ag2ZnSn(S,Se)4 or (Cu,Ag)2ZnSn(S,Se)4 (CAZTS) nanocrystal (NC) solar cells. By referring to many scientific breakthroughs in the field of thin film and colloidal NCs photovoltaics in recent years, and combining the extensive expertise in colloidal NC PVs of the hosting group with the developed material processing skills spanning chemistry, physics, and engineering of the experienced research (ER), this project aims at specific research objectives including designing environment-friendly, CRM-free nanomaterials with excellent optoelectronic properties; exploiting nanoscale tenability via colloidal chemistry to passivate this new class of NC materials; applying only mild sintering, and optimizing new device architecture (e.g. superstrate p-i-n, bulk nano-heterojunctions,etc.) to unlock the full potential of CAZTS NCs. This fellowship will be carried out at ICFO – The Institute of Photonic Sciences in Spain, supervised by Prof. Gerasimos Konstantatos.

Status

CLOSED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019