LrgPSCs | Highly Efficient Large-area Perovskite Solar Cells

Summary
Perovskite solar cells (PSCs) are among the most promising next-generation photovoltaic technologies: it combines high photovoltaic performance with low fabrication costs. The practical adoption of PSCs will reduce the levelized cost of electricity of solar energy, contributing to deal with the global crisis on climate change and sustainable development. Despite these promises, the lack of efficient large-area PSCs has so far seriously hindered their commercialization potential, representing one of the most critical challenges in the field of perovskite photovoltaics.
The goal of this project is to develop industrial-relevant highly efficient large-area PSCs (> 20% module efficiency at aperture areas of 200-800 cm2). In this project, an interdisciplinary approach will be devised by combining scalable perovskite fabrication, novel interface engineering, and deep mechanistic understanding to achieve this ambitious goal. Particularly a new solution-processing strategy will be developed to control the crystallization of perovskites, which can enable homogenous crystal growth at large-scales, generating uniform perovskite thin films. Novel interface engineering will then be explored to demonstrate thickness-insensitive 2D/3D perovskite passivation, by utilizing high hole-mobility 2D perovskites. Eventually, the new material-processing strategies will be adopted in the standard perovskite module fabrication, attaining record efficiency large-area PSCs. In addition to device fabrication, fundamental investigations based on ultrafast spectroscopy and synchrotron characterization will also be carried out to elucidate the material formation and device operation mechanism.
This project combines the host lab`s expertise on PSC fabrication and the researcher`s strong background in material design and synthesis. It is highly relevant to Horizon 2020`s goal on clean and efficient energy, whose completion will support Europe at the forefront of renewable energy research.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101026353
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 191 149,44 Euro - 191 149,00 Euro
Cordis data

Original description

Perovskite solar cells (PSCs) are among the most promising next-generation photovoltaic technologies: it combines high photovoltaic performance with low fabrication costs. The practical adoption of PSCs will reduce the levelized cost of electricity of solar energy, contributing to deal with the global crisis on climate change and sustainable development. Despite these promises, the lack of efficient large-area PSCs has so far seriously hindered their commercialization potential, representing one of the most critical challenges in the field of perovskite photovoltaics.
The goal of this project is to develop industrial-relevant highly efficient large-area PSCs (> 20% module efficiency at aperture areas of 200-800 cm2). In this project, an interdisciplinary approach will be devised by combining scalable perovskite fabrication, novel interface engineering, and deep mechanistic understanding to achieve this ambitious goal. Particularly a new solution-processing strategy will be developed to control the crystallization of perovskites, which can enable homogenous crystal growth at large-scales, generating uniform perovskite thin films. Novel interface engineering will then be explored to demonstrate thickness-insensitive 2D/3D perovskite passivation, by utilizing high hole-mobility 2D perovskites. Eventually, the new material-processing strategies will be adopted in the standard perovskite module fabrication, attaining record efficiency large-area PSCs. In addition to device fabrication, fundamental investigations based on ultrafast spectroscopy and synchrotron characterization will also be carried out to elucidate the material formation and device operation mechanism.
This project combines the host lab`s expertise on PSC fabrication and the researcher`s strong background in material design and synthesis. It is highly relevant to Horizon 2020`s goal on clean and efficient energy, whose completion will support Europe at the forefront of renewable energy research.

Status

CLOSED

Call topic

MSCA-IF-2020

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2020
MSCA-IF-2020 Individual Fellowships