COSMAGREEN | COating for SMArt GREENhouses

Summary
Plants do not harvest the whole solar spectrum equally at the different wavelengths. They indeed reflect green, absorbs red and blue, so that we see them green. The consequence of that is that the solar spectrum is actually not optimised for energy conversion. However, incoming solar spectrum can be modified in order to shift less efficient wavelengths to more efficient one (like green to red) using fluorescent pigments or phosphors. In this way, photosynthesis efficiency can be increased. Meanwhile, when one uses standard fluorescent pigments implemented in a coating at the top of a greenhouse, half of the converted sunlight is emitted back to space due to their isotropic emission, thus lowering the conversion efficiency. To overcome this limit, we propose to use the properties of nano antennas for which it has been shown that they can change the emitting direction of pigments when they are placed in their vicinity. We will design a greenhouse coating that enhance photosynthesis by increasing the effective light inside greenhouses using coatings having nano-antenna phosphor pairs. Firstly, we will perform numerical calculations considering near field radiation and fluorescence, in order to find an optimum design in terms of antenna and phosphor size. Then, the coating will be produced in collaboration with a deposition facility using corresponding parameters from the numerical study. Finally, the actual design will be characterised using spectroscopy to determine the discrepancy between numerical and experimental study. Further actions like changing numerical solver and/or fabrication methods will be considered after a feedback from the two studies.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/892456
Start date: 01-10-2021
End date: 30-09-2023
Total budget - Public funding: 196 707,84 Euro - 196 707,00 Euro
Cordis data

Original description

Plants do not harvest the whole solar spectrum equally at the different wavelengths. They indeed reflect green, absorbs red and blue, so that we see them green. The consequence of that is that the solar spectrum is actually not optimised for energy conversion. However, incoming solar spectrum can be modified in order to shift less efficient wavelengths to more efficient one (like green to red) using fluorescent pigments or phosphors. In this way, photosynthesis efficiency can be increased. Meanwhile, when one uses standard fluorescent pigments implemented in a coating at the top of a greenhouse, half of the converted sunlight is emitted back to space due to their isotropic emission, thus lowering the conversion efficiency. To overcome this limit, we propose to use the properties of nano antennas for which it has been shown that they can change the emitting direction of pigments when they are placed in their vicinity. We will design a greenhouse coating that enhance photosynthesis by increasing the effective light inside greenhouses using coatings having nano-antenna phosphor pairs. Firstly, we will perform numerical calculations considering near field radiation and fluorescence, in order to find an optimum design in terms of antenna and phosphor size. Then, the coating will be produced in collaboration with a deposition facility using corresponding parameters from the numerical study. Finally, the actual design will be characterised using spectroscopy to determine the discrepancy between numerical and experimental study. Further actions like changing numerical solver and/or fabrication methods will be considered after a feedback from the two studies.

Status

TERMINATED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019