Summary
The SUPERB project will train an experienced researcher (ER), Dr. Diego López Barreiro, in the modelling and manufacture of protein-based polymers for healthcare materials. The ER will combine building blocks of structural proteins like elastin or collagen into de novo fusion protein polymers. The healthcare community is becoming increasingly interested in these polymers as a source of advanced healthcare materials, due to their natural abundance, tuneable degradation, easy processability, cytocompatibility, or controllable physicochemical properties. This project will study how polymer features and processing conditions determine the nanostructure of the materials derived thereof, and hence their macroscopic properties. This will be done through an interdisciplinary approach that will (i) use molecular dynamics simulations to select protein sequences and processing conditions for material manufacture; (ii) biosynthesise selected proteins via fermentative processes; and (iii) fabricate, test and characterise hydrogels or thin film materials for model validation. The excellent knowledge and expertise of the host institution in this crucial field for the EU will ensure the success of this proposal. This project will develop a methodology to improve the rationality and decrease the time needed to develop new protein healthcare materials, reducing animal use and experimental costs. Moreover, while the proposed approach is used here on a limited suite of protein building blocks, it can be applied to any other peptide sequences or biopolymers (e.g., bioactive peptides, bioplastics, nanocellulose), becoming a valuable tool to accelerate the discovery of healthcare materials. Furthermore, the project will support the ER in deepening his expertise in protein materials and expose him to the industrial field. This will also enhance his research, project and IPR management skills, acquiring necessary competences for professional maturity and an independent career.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/892369 |
Start date: | 01-05-2020 |
End date: | 30-04-2022 |
Total budget - Public funding: | 175 572,48 Euro - 175 572,00 Euro |
Cordis data
Original description
The SUPERB project will train an experienced researcher (ER), Dr. Diego López Barreiro, in the modelling and manufacture of protein-based polymers for healthcare materials. The ER will combine building blocks of structural proteins like elastin or collagen into de novo fusion protein polymers. The healthcare community is becoming increasingly interested in these polymers as a source of advanced healthcare materials, due to their natural abundance, tuneable degradation, easy processability, cytocompatibility, or controllable physicochemical properties. This project will study how polymer features and processing conditions determine the nanostructure of the materials derived thereof, and hence their macroscopic properties. This will be done through an interdisciplinary approach that will (i) use molecular dynamics simulations to select protein sequences and processing conditions for material manufacture; (ii) biosynthesise selected proteins via fermentative processes; and (iii) fabricate, test and characterise hydrogels or thin film materials for model validation. The excellent knowledge and expertise of the host institution in this crucial field for the EU will ensure the success of this proposal. This project will develop a methodology to improve the rationality and decrease the time needed to develop new protein healthcare materials, reducing animal use and experimental costs. Moreover, while the proposed approach is used here on a limited suite of protein building blocks, it can be applied to any other peptide sequences or biopolymers (e.g., bioactive peptides, bioplastics, nanocellulose), becoming a valuable tool to accelerate the discovery of healthcare materials. Furthermore, the project will support the ER in deepening his expertise in protein materials and expose him to the industrial field. This will also enhance his research, project and IPR management skills, acquiring necessary competences for professional maturity and an independent career.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)