Summary
Conjugated polymers are drawing a constantly growing interest for modern energy technologies, particularly for the clean production of hydrogen fuel by visible-light photo-electrocatalytic water splitting. Although conjugated polymer catalysts are reported as stable, low cost and versatile materials, current synthetic approaches (solution-based) have prevented the study of the most interesting motifs and hindered the up-scaling of most conjugated polymers for practical applications. The central idea of the TODAM project builds on the recent achievements of the host group in the chemical vapour deposition (CVD) reaction of chromophore-based conjugated polymers, which will constitute a new field of research for the applicant. Notably, the TODAM project will combine the expertise of the applicant and the supervisor to expand far beyond the state-of-the-art of conjugated polymers while investigating the gas phase polymerisation of industrial dyes, i.e. DiketoPyrroloPyrrole (DPP) derivatives. In spite of their remarkable properties, including an exceptional light resistance and unique physicochemical properties, conjugated DPP assemblies remain a largely unexplored topic due to the lack of synthetic approaches. The broad knowledge of the applicant in organic chemistry, and more particularly his cutting-edge expertise in the field of functional dyes, will be used for the design and study of new homo- and copolymers. Finally, the scalability of the proposed CVD approach, readily forming thin films, will allow the integration of the new conjugated polymers as heterogeneous catalysts for photo-electrochemical water splitting. The formation, separation and transport of charges will be elucidated for the design and large-scale application of robust and efficient metal-free heterogeneous catalysts for the generation of clean solar-based fuels.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101031568 |
Start date: | 15-04-2021 |
End date: | 14-04-2023 |
Total budget - Public funding: | 178 320,00 Euro - 178 320,00 Euro |
Cordis data
Original description
Conjugated polymers are drawing a constantly growing interest for modern energy technologies, particularly for the clean production of hydrogen fuel by visible-light photo-electrocatalytic water splitting. Although conjugated polymer catalysts are reported as stable, low cost and versatile materials, current synthetic approaches (solution-based) have prevented the study of the most interesting motifs and hindered the up-scaling of most conjugated polymers for practical applications. The central idea of the TODAM project builds on the recent achievements of the host group in the chemical vapour deposition (CVD) reaction of chromophore-based conjugated polymers, which will constitute a new field of research for the applicant. Notably, the TODAM project will combine the expertise of the applicant and the supervisor to expand far beyond the state-of-the-art of conjugated polymers while investigating the gas phase polymerisation of industrial dyes, i.e. DiketoPyrroloPyrrole (DPP) derivatives. In spite of their remarkable properties, including an exceptional light resistance and unique physicochemical properties, conjugated DPP assemblies remain a largely unexplored topic due to the lack of synthetic approaches. The broad knowledge of the applicant in organic chemistry, and more particularly his cutting-edge expertise in the field of functional dyes, will be used for the design and study of new homo- and copolymers. Finally, the scalability of the proposed CVD approach, readily forming thin films, will allow the integration of the new conjugated polymers as heterogeneous catalysts for photo-electrochemical water splitting. The formation, separation and transport of charges will be elucidated for the design and large-scale application of robust and efficient metal-free heterogeneous catalysts for the generation of clean solar-based fuels.Status
CLOSEDCall topic
MSCA-IF-2020Update Date
28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping