PiezoSpin | Antiferromagnetic straintronics: towards an non-volatile all-voltage controlled memory device

Summary
The holy grail of magnetic storage research is the discovery of novel all-voltage controlled magnetic metamaterials that enable to develop a universal memory device that simultaneously meet high-power-efficiency and ultra-high storage capacity. Antiferromagnetic (AFM) materials could represent the future of spintronic applications as a result of the numerous interesting features they combine, e.g. they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and are capable of generating large magneto-transport effects. However, the truly distinctive feature posed by AFM materials when compared to ferromagnetic ones is its modulated magnetic order, which is marginally exploited in spintronics applications.
The PiezoSpin project seeks to demonstrate a novel proof-of-concept for an innovative universal ultra-high power-efficient AFM-based spintronics memory device, which has the potential for transforming the ferromagnetic-dominated magnetic data storage technology. We will produce hybrid FeRh-based alloy/ferroelectric (FE) heterostructures, where the FeRh-based alloy overlayer will act as a resistive-switch driven by the FE underlayer acting as a voltage-controlled actuator. We will investigate the strain-dependent electrical resistivity of the FeRh-based alloy on the applied voltage. This piezo-magnetoresistivity effect will be optimized by chemical doping of the FeRh-based alloy to maximize that strain-dependent resistivity change at room temperature. This novel hybrid device concept exploits the strain-dependent giant magnetoresistance that appears in spin-orbit coupled (anisotropic) AFMs. Its origin resides in the superzones band-gap effect as a result of the onset of modulated magnetic order. Such piezo-magnetoresistivity effect is shared by numerous AFMs, opening up a new research field, i.e. AFM-based strain-electronics, where the material combinations and functionalities to explore are immense.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/748691
Start date: 01-10-2017
End date: 30-09-2019
Total budget - Public funding: 195 454,80 Euro - 195 454,00 Euro
Cordis data

Original description

The holy grail of magnetic storage research is the discovery of novel all-voltage controlled magnetic metamaterials that enable to develop a universal memory device that simultaneously meet high-power-efficiency and ultra-high storage capacity. Antiferromagnetic (AFM) materials could represent the future of spintronic applications as a result of the numerous interesting features they combine, e.g. they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and are capable of generating large magneto-transport effects. However, the truly distinctive feature posed by AFM materials when compared to ferromagnetic ones is its modulated magnetic order, which is marginally exploited in spintronics applications.
The PiezoSpin project seeks to demonstrate a novel proof-of-concept for an innovative universal ultra-high power-efficient AFM-based spintronics memory device, which has the potential for transforming the ferromagnetic-dominated magnetic data storage technology. We will produce hybrid FeRh-based alloy/ferroelectric (FE) heterostructures, where the FeRh-based alloy overlayer will act as a resistive-switch driven by the FE underlayer acting as a voltage-controlled actuator. We will investigate the strain-dependent electrical resistivity of the FeRh-based alloy on the applied voltage. This piezo-magnetoresistivity effect will be optimized by chemical doping of the FeRh-based alloy to maximize that strain-dependent resistivity change at room temperature. This novel hybrid device concept exploits the strain-dependent giant magnetoresistance that appears in spin-orbit coupled (anisotropic) AFMs. Its origin resides in the superzones band-gap effect as a result of the onset of modulated magnetic order. Such piezo-magnetoresistivity effect is shared by numerous AFMs, opening up a new research field, i.e. AFM-based strain-electronics, where the material combinations and functionalities to explore are immense.

Status

CLOSED

Call topic

MSCA-IF-2016

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2016
MSCA-IF-2016