Summary
The proposed training-through-research aims to develop novel antibacterial materials for medical devices based on Zr-Cu-Ag metallic glasses in the form of microfibers. The major cause of metal implants retrieval is infection due to bacterial biofilm formation on their surface. Many studies have been conducted on the development of antibacterial coating on metallic implants, but evidence has shown numerous drawbacks associated with coatings including their lack of durability. “MAGIC” project proposes the development of Zr-Cu-Ag metallic glasses with generic and intrinsic antibacterial properties which makes them capable of battling antibiotic resistance bacterial infection with no further required coating. Meaningful development of this novel class of intrinsic antibacterial metals requires a fundamental understanding of their antibacterial mechanism which to date is not well-understood. Therefore, “MAGIC” project fundamental ambition is to discover the underlying antibacterial mechanism of innovative Zr-Cu-Ag metallic glasses though a novel interdisciplinary approach, combing materials engineering knowledge of metallic glasses with advanced biological analysis of bacteria. On the engineering side, the main antibacterial contributors “chemical composition” and “surface energy” of Zr-Cu-Ag metallic glass will be modified and controlled; On the biological analysis side, bacterial genetic and metabolic response to these changes will be studied by coupling basic metabolic assays with next-generation sequencing and omics techniques. Furthermore, to facilitate the integration of antibacterial metallic glasses in the medical industry, “MAGIC” has an applied ambition to fabricate the best found Zr-Cu-Ag metallic glass (in terms of chemical composition and surface energy) in the form of microfibers for the very first time. Microfibers have higher surface areas and are easier to be formed into different shapes, offering added value to their applicability in industry.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/892050 |
Start date: | 01-10-2020 |
End date: | 19-09-2023 |
Total budget - Public funding: | 171 473,28 Euro - 171 473,00 Euro |
Cordis data
Original description
The proposed training-through-research aims to develop novel antibacterial materials for medical devices based on Zr-Cu-Ag metallic glasses in the form of microfibers. The major cause of metal implants retrieval is infection due to bacterial biofilm formation on their surface. Many studies have been conducted on the development of antibacterial coating on metallic implants, but evidence has shown numerous drawbacks associated with coatings including their lack of durability. “MAGIC” project proposes the development of Zr-Cu-Ag metallic glasses with generic and intrinsic antibacterial properties which makes them capable of battling antibiotic resistance bacterial infection with no further required coating. Meaningful development of this novel class of intrinsic antibacterial metals requires a fundamental understanding of their antibacterial mechanism which to date is not well-understood. Therefore, “MAGIC” project fundamental ambition is to discover the underlying antibacterial mechanism of innovative Zr-Cu-Ag metallic glasses though a novel interdisciplinary approach, combing materials engineering knowledge of metallic glasses with advanced biological analysis of bacteria. On the engineering side, the main antibacterial contributors “chemical composition” and “surface energy” of Zr-Cu-Ag metallic glass will be modified and controlled; On the biological analysis side, bacterial genetic and metabolic response to these changes will be studied by coupling basic metabolic assays with next-generation sequencing and omics techniques. Furthermore, to facilitate the integration of antibacterial metallic glasses in the medical industry, “MAGIC” has an applied ambition to fabricate the best found Zr-Cu-Ag metallic glass (in terms of chemical composition and surface energy) in the form of microfibers for the very first time. Microfibers have higher surface areas and are easier to be formed into different shapes, offering added value to their applicability in industry.Status
CLOSEDCall topic
MSCA-IF-2019Update Date
28-04-2024
Images
No images available.
Geographical location(s)