SRIMEM | Super-Resolution Imaging and Mapping of Epigenetic Modifications

Summary
Epigenetic marks are posttranslational modifications of chromatin that act as gene regulators. Although every cell-type contains the same DNA sequence, the epigenetic marks dictate specific function of each cell-type. Epigenetic modifications are both heritable and dynamic, and can be treated enzymatically to reverse. The dynamic marks sometimes lead to aberrant gene regulation in cells, causing diseases such as cancer, Alzheimer’s, and diabetes. Therefore, epigenetic state of individual genes can be used to identify the aberrant genes to reverse them.

In this project, a novel assay for simultaneous identification of epigenetic marks and their genomic position is proposed. State-of-the-art DNA-PAINT super-resolution microscopy, developed by Prof. Jungmann, in combination with immunofluorescence in situ hybridization (iFISH) will be used to identify the epigenetic marks in human cells with very high precision (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/796606
Start date: 01-09-2018
End date: 31-08-2020
Total budget - Public funding: 171 460,80 Euro - 171 460,00 Euro
Cordis data

Original description

Epigenetic marks are posttranslational modifications of chromatin that act as gene regulators. Although every cell-type contains the same DNA sequence, the epigenetic marks dictate specific function of each cell-type. Epigenetic modifications are both heritable and dynamic, and can be treated enzymatically to reverse. The dynamic marks sometimes lead to aberrant gene regulation in cells, causing diseases such as cancer, Alzheimer’s, and diabetes. Therefore, epigenetic state of individual genes can be used to identify the aberrant genes to reverse them.

In this project, a novel assay for simultaneous identification of epigenetic marks and their genomic position is proposed. State-of-the-art DNA-PAINT super-resolution microscopy, developed by Prof. Jungmann, in combination with immunofluorescence in situ hybridization (iFISH) will be used to identify the epigenetic marks in human cells with very high precision (

Status

CLOSED

Call topic

MSCA-IF-2017

Update Date

28-04-2024
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
EU-Programme-Call
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2017
MSCA-IF-2017