NARESICA | Mechanisms linking stress and ageing in two avian species exhibiting contrasted natural resistance to stress (NAtural REsistance to Stress-Induced Cellular Ageing)

Summary
Previous research has identified stress exposure as a key factor influencing health state and ageing rate. The overall aim of the proposed project is to investigate the precise mechanisms linking stress exposure to accelerated cellular ageing (using telomere length as a biomarker of ageing), and to identify potential mechanisms allowing some species to better prevent stress-induced ageing than others. To this aim I will use two avian species (Japanese quail and king penguin) to investigate (1) if chronic stress affects telomere shortening differently between species exhibiting contrasted stress resistance, (2) if glucocorticoid ‘stress’ hormones are directly responsible of the stress-induced alterations in telomere dynamics, (3) by which mechanisms (i.e. alterations of mitochondrial function, oxidative stress and DNA damage, impaired mTOR cellular signalling or telomere maintenance) stress exposure is accelerating telomere shortening, and if king penguin have specific mechanisms preventing/limiting stress-induced telomere shortening, and (4) if chronic stress / glucocorticoid hormones modify the acute oxidative stress responses of individuals. To this end, I will employ experimental approaches manipulating stress exposure and glucocorticoid hormones in captive Japanese quail and wild king penguins, and measure the resulting impact on telomere shortening and its potential cellular drivers (mitochondrial function, oxidative stress, mTOR cellular signalling). This project will enable a two-way transfer of skills and competences between the applicant and the host, by providing training to the applicant regarding mitochondrial biology, cellular signalling and gene expression, and by providing the host with the opportunity to integrate an ageing component through the use of telomeres in his current and future projects.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/894963
Start date: 01-09-2021
End date: 31-08-2023
Total budget - Public funding: 184 707,84 Euro - 184 707,00 Euro
Cordis data

Original description

Previous research has identified stress exposure as a key factor influencing health state and ageing rate. The overall aim of the proposed project is to investigate the precise mechanisms linking stress exposure to accelerated cellular ageing (using telomere length as a biomarker of ageing), and to identify potential mechanisms allowing some species to better prevent stress-induced ageing than others. To this aim I will use two avian species (Japanese quail and king penguin) to investigate (1) if chronic stress affects telomere shortening differently between species exhibiting contrasted stress resistance, (2) if glucocorticoid ‘stress’ hormones are directly responsible of the stress-induced alterations in telomere dynamics, (3) by which mechanisms (i.e. alterations of mitochondrial function, oxidative stress and DNA damage, impaired mTOR cellular signalling or telomere maintenance) stress exposure is accelerating telomere shortening, and if king penguin have specific mechanisms preventing/limiting stress-induced telomere shortening, and (4) if chronic stress / glucocorticoid hormones modify the acute oxidative stress responses of individuals. To this end, I will employ experimental approaches manipulating stress exposure and glucocorticoid hormones in captive Japanese quail and wild king penguins, and measure the resulting impact on telomere shortening and its potential cellular drivers (mitochondrial function, oxidative stress, mTOR cellular signalling). This project will enable a two-way transfer of skills and competences between the applicant and the host, by providing training to the applicant regarding mitochondrial biology, cellular signalling and gene expression, and by providing the host with the opportunity to integrate an ageing component through the use of telomeres in his current and future projects.

Status

TERMINATED

Call topic

MSCA-IF-2019

Update Date

28-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.3. EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (MSCA)
H2020-EU.1.3.2. Nurturing excellence by means of cross-border and cross-sector mobility
H2020-MSCA-IF-2019
MSCA-IF-2019